-
2
-
-
84858773678
-
Asynchronous distributed learning of topic models
-
Asuncion, A. U., Smyth, P., and Welling, M. (2008). Asynchronous distributed learning of topic models. In Advances in Neural Information Processing Systems, pages 81-88.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 81-88
-
-
Asuncion, A.U.1
Smyth, P.2
Welling, M.3
-
3
-
-
33645560014
-
Parallel Markov chain Monte Carlo simulation by pre-fetching
-
Brockwell, A. E. (2006). Parallel Markov Chain Monte Carlo simulation by Pre-Fetching. Journal of Computational and Graphical Statistics, 15(1):pp. 246-261.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.1
, pp. 246-261
-
-
Brockwell, A.E.1
-
4
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Commun. ACM, 51(1): 107-113.
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
6
-
-
84888155846
-
Gaussian processes for big data
-
Nicholson, A. and Smyth, P., editors AUAI Press
-
Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Nicholson, A. and Smyth, P., editors, UAI. AUAI Press.
-
(2013)
UAI
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.D.3
-
7
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M. D., and Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic Variational Inference. JOURNAL OF MACHINE LEARNING RESEARCH, 14: 1303-1347.
-
(2013)
JOURNAL of MACHINE LEARNING RESEARCH
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
8
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Lawrence, N. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. The Journal of Machine Learning Research, 6: 1783-1816.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.1
-
9
-
-
84919908069
-
Parallel Markov chain Monte Carlo for dirichlet process mixtures
-
Lovell, D., and Adams, R. P., and Mansingka, V. (2012). Parallel Markov chain Monte Carlo for Dirichlet process mixtures. In Workshop on Big Learning, NIPS.
-
(2012)
Workshop on Big Learning, NIPS
-
-
Lovell, D.1
Adams, R.P.2
Mansingka, V.3
-
10
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural networks, 6(4): 525-533.
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
15
-
-
85026233840
-
Parallel Bayesian computation
-
Kontoghiorghes, E. J., editor Chapman and Hall/CRC, Boca Raton, FL, USA
-
Wilkinson, D. J. (2005). Parallel Bayesian computation. In Kontoghiorghes, E. J., editor, Handbook of Parallel Computing and Statistics, Volume 184, pages 477-508. Chapman and Hall/CRC, Boca Raton, FL, USA.
-
(2005)
Handbook of Parallel Computing and Statistics
, vol.184
, pp. 477-508
-
-
Wilkinson, D.J.1
-
16
-
-
84897382844
-
Parallel Markov chain Monte Carlo for non-parametric mixture models
-
Williamson, S., Dubey, A., and Xing, E. P. (2013). Parallel Markov Chain Monte Carlo for non-parametric mixture models. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 98-106.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, pp. 98-106
-
-
Williamson, S.1
Dubey, A.2
Xing, E.P.3
|