메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Active learning for convolutional neural networks: A core-set approach

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; LARGE DATASET; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 85083953615     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1334)

References (52)
  • 2
    • 84969939978 scopus 로고    scopus 로고
    • Active nearest neighbors in changing environments
    • C. Berlind and R. Urner. Active nearest neighbors in changing environments. In ICML, 2015.
    • (2015) ICML
    • Berlind, C.1    Urner, R.2
  • 3
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • Klaus Brinker. Incorporating diversity in active learning with support vector machines. In ICML, volume 3, pp. 59–66, 2003.
    • (2003) ICML , vol.3 , pp. 59-66
    • Brinker, K.1
  • 5
    • 33749257223 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In NIPS, 2004.
    • (2004) NIPS
    • Dasgupta, S.1
  • 6
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • L. K. Saul, Y. Weiss, and L. Bottou (eds, MIT Press
    • Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In L. K. Saul, Y. Weiss, and L. Bottou (eds.), Advances in Neural Information Processing Systems 17, pp. 337–344. MIT Press, 2005. URL http://papers.nips.cc/paper/2636-analysis-of-a-greedy-active-learning-strategy.pdf.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 337-344
    • Dasgupta, S.1
  • 7
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Begüm Demir, Claudio Persello, and Lorenzo Bruzzone. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(3):1014–1031, 2011.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 10
    • 84898808985 scopus 로고    scopus 로고
    • A convex optimization framework for active learning
    • Ehsan Elhamifar, Guillermo Sapiro, Allen Yang, and S Shankar Sasrty. A convex optimization framework for active learning. In ICCV, 2013.
    • (2013) ICCV
    • Elhamifar, E.1    Sapiro, G.2    Yang, A.3    Sasrty, S.S.4
  • 11
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query by committee algorithm. Machine learning, 28(2-3), 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 12
    • 84998879817 scopus 로고    scopus 로고
    • Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
    • Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning, 2016.
    • (2016) International Conference on Machine Learning
    • Gal, Y.1    Ghahramani, Z.2
  • 15
    • 84856462978 scopus 로고    scopus 로고
    • Adaptive submodularity: Theory and applications in active learning and stochastic optimization
    • Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.
    • (2011) Journal of Artificial Intelligence Research , vol.42 , pp. 427-486
    • Golovin, D.1    Krause, A.2
  • 18
    • 34948904828 scopus 로고    scopus 로고
    • Technical Report 7694, California Institute of Technology
    • G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology, 2007. URL http://authors.library.caltech.edu/7694.
    • (2007) Caltech-256 Object Category Dataset
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 27
    • 70450181250 scopus 로고    scopus 로고
    • Multi-class active learning for image classification
    • Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 29
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with Gaussian processes for object categorization
    • Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with gaussian processes for object categorization. In ICCV, 2007.
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 31
    • 84887354642 scopus 로고    scopus 로고
    • Adaptive active learning for image classification
    • Xin Li and Yuhong Guo. Adaptive active learning for image classification. In CVPR, 2013.
    • (2013) CVPR
    • Li, X.1    Guo, Y.2
  • 33
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • David JC MacKay. Information-based objective functions for active data selection. Neural computation, 4(4):590–604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 34
    • 0002332781 scopus 로고    scopus 로고
    • Employing em and pool-based active learning for text classification
    • Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-based active learning for text classification. In ICML, 1998.
    • (1998) ICML
    • McCallumzy, A.K.1    Nigamy, K.2
  • 38
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through monte carlo estimation of error reduction
    • Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo estimation of error reduction. ICML, 2001.
    • (2001) ICML
    • Roy, N.1    McCallum, A.2
  • 40
    • 68949137209 scopus 로고    scopus 로고
    • University of Wisconsin, Madison
    • Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11, 2010.
    • (2010) Active Learning Literature Survey , vol.52 , Issue.55-66 , pp. 11
    • Settles, B.1
  • 43
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Simon Tong and Daphne Koller. Support vector machine active learning with applications to text classification. JMLR, 2(Nov):45–66, 2001.
    • (2001) JMLR , vol.2 , Issue.Nov , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 44
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm training on very large data sets. JMLR, 6(Apr):363–392, 2005.
    • (2005) JMLR , vol.6 , Issue.Apr , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 46
    • 84923696228 scopus 로고    scopus 로고
    • Querying discriminative and representative samples for batch mode active learning
    • Zheng Wang and Jieping Ye. Querying discriminative and representative samples for batch mode active learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(3):17, 2015.
    • (2015) ACM Transactions on Knowledge Discovery from Data (TKDD) , vol.9 , Issue.3 , pp. 17
    • Wang, Z.1    Ye, J.2
  • 47
    • 84926184611 scopus 로고    scopus 로고
    • Using document summarization techniques for speech data subset selection
    • Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff A Bilmes. Using document summarization techniques for speech data subset selection. In HLT-NAACL, 2013.
    • (2013) HLT-NAACL
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bilmes, J.A.4
  • 48
    • 84969930783 scopus 로고    scopus 로고
    • Submodularity in data subset selection and active learning
    • Kai Wei, Rishabh K Iyer, and Jeff A Bilmes. Submodularity in data subset selection and active learning. In ICML, 2015.
    • (2015) ICML
    • Wei, K.1    Iyer, R.K.2    Bilmes, J.A.3
  • 50
    • 84867738590 scopus 로고    scopus 로고
    • Robustness and generalization
    • Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423, 2012.
    • (2012) Machine Learning , vol.86 , Issue.3 , pp. 391-423
    • Xu, H.1    Mannor, S.2
  • 51
    • 84940005208 scopus 로고    scopus 로고
    • Multi-class active learning by uncertainty sampling with diversity maximization
    • Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-class active learning by uncertainty sampling with diversity maximization. International Journal of Computer Vision, 113(2):113–127, 2015.
    • (2015) International Journal of Computer Vision , vol.113 , Issue.2 , pp. 113-127
    • Yang, Y.1    Ma, Z.2    Nie, F.3    Chang, X.4    Hauptmann, A.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.