메뉴 건너뛰기




Volumn , Issue , 2019, Pages

Proxylessnas: Direct neural architecture search on target task and hardware

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER HARDWARE; COST REDUCTION; MEMORY ARCHITECTURE; NEURAL NETWORKS;

EID: 85083952043     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1120)

References (38)
  • 1
    • 85057226704 scopus 로고    scopus 로고
    • Understanding and simplifying one-shot architecture search
    • Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and simplifying one-shot architecture search. In ICML, 2018.
    • (2018) ICML
    • Bender, G.1    Kindermans, P.-J.2    Zoph, B.3    Vasudevan, V.4    Le, Q.5
  • 2
    • 85083953913 scopus 로고    scopus 로고
    • SmaSH: One-shot model architecture search through hypernetworks
    • Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model architecture search through hypernetworks. In ICLR, 2018.
    • (2018) ICLR
    • Brock, A.1    Lim, T.2    Ritchie, J.M.3    Weston, N.4
  • 3
    • 85055694066 scopus 로고    scopus 로고
    • Efficient architecture search by network transformation
    • Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by network transformation. In AAAI, 2018a.
    • (2018) AAAI
    • Cai, H.1    Chen, T.2    Zhang, W.3    Yu, Y.4    Wang, J.5
  • 4
    • 85057246386 scopus 로고    scopus 로고
    • Path-level network transformation for efficient architecture search
    • Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transformation for efficient architecture search. In ICML, 2018b.
    • (2018) ICML
    • Cai, H.1    Yang, J.2    Zhang, W.3    Han, S.4    Yu, Y.5
  • 5
    • 84965117606 scopus 로고    scopus 로고
    • BinaryConnect: Training deep neural networks with binary weights during propagations
    • Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks with binary weights during propagations. In NIPS, 2015.
    • (2015) NIPS
    • Courbariaux, M.1    Bengio, Y.2    David, J.-P.3
  • 7
    • 85071187216 scopus 로고    scopus 로고
    • DPP-Net: Device-aware progressive search for pareto-optimal neural architectures
    • Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-aware progressive search for pareto-optimal neural architectures. In ECCV, 2018.
    • (2018) ECCV
    • Dong, J.-D.1    Cheng, A.-C.2    Juan, D.-C.3    Wei, W.4    Sun, M.5
  • 11
    • 85039865742 scopus 로고    scopus 로고
    • Deep pyramidal residual networks
    • Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In CVPR, 2017.
    • (2017) CVPR
    • Han, D.1    Kim, J.2    Kim, J.3
  • 12
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural network
    • Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. In NIPS, 2015.
    • (2015) NIPS
    • Han, S.1    Pool, J.2    Tran, J.3    Dally, W.4
  • 13
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
    • Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016.
    • (2016) ICLR
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 14
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 85058359193 scopus 로고    scopus 로고
    • AMC: Automl for model compression and acceleration on mobile devices
    • Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression and acceleration on mobile devices. In ECCV, 2018.
    • (2018) ECCV
    • He, Y.1    Lin, J.2    Liu, Z.3    Wang, H.4    Li, L.-J.5    Han, S.6
  • 23
    • 85083952289 scopus 로고    scopus 로고
    • Hierarchical representations for efficient architecture search
    • Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical representations for efficient architecture search. In ICLR, 2018b.
    • (2018) ICLR
    • Liu, H.1    Simonyan, K.2    Vinyals, O.3    Fernando, C.4    Kavukcuoglu, K.5
  • 25
    • 85041906189 scopus 로고    scopus 로고
    • Learning efficient convolutional networks through network slimming
    • Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In ICCV, 2017.
    • (2017) ICCV
    • Liu, Z.1    Li, J.2    Shen, Z.3    Huang, G.4    Yan, S.5    Zhang, C.6
  • 27
    • 85061722537 scopus 로고    scopus 로고
    • ShuffleNet v2: Practical guidelines for efficient cnn architecture design
    • Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In ECCV, 2018.
    • (2018) ECCV
    • Ma, N.1    Zhang, X.2    Zheng, H.-T.3    Sun, J.4
  • 28
    • 85057232755 scopus 로고    scopus 로고
    • Efficient neural architecture search via parameter sharing
    • Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search via parameter sharing. In ICML, 2018.
    • (2018) ICML
    • Pham, H.1    Guan, M.Y.2    Zoph, B.3    Le, Q.V.4    Dean, J.5
  • 30
    • 85062799511 scopus 로고    scopus 로고
    • Mo-bilenetv2: Inverted residuals and linear bottlenecks
    • Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.
    • (2018) CVPR
    • Sandler, M.1    Howard, A.2    Zhu, M.3    Zhmoginov, A.4    Chen, L.-C.5
  • 33
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Reinforcement Learning. 1992.
    • (1992) Reinforcement Learning
    • Williams, R.J.1
  • 35
    • 85062863340 scopus 로고    scopus 로고
    • Practical block-wise neural network architecture generation
    • Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural network architecture generation. In CVPR, 2018.
    • (2018) CVPR
    • Zhong, Z.1    Yan, J.2    Wu, W.3    Shao, J.4    Liu, C.-L.5
  • 37
    • 85068717703 scopus 로고    scopus 로고
    • Neural architecture search with reinforcement learning
    • Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
    • (2017) ICLR
    • Zoph, B.1    Le, Q.V.2
  • 38
    • 85062864819 scopus 로고    scopus 로고
    • Learning transferable architectures for scalable image recognition
    • Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable image recognition. In CVPR, 2018.
    • (2018) CVPR
    • Zoph, B.1    Vasudevan, V.2    Shlens, J.3    Le, Q.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.