-
1
-
-
85075670920
-
Tensorflow: A system for large-scale machine learning
-
Berkeley, CA, USA, USENIX Association
-
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI'16, pp. 265-283, Berkeley, CA, USA, 2016. USENIX Association. ISBN978-1-931971-33-1.
-
(2016)
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI'16
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.G.15
Steiner, B.16
Tucker, P.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
2
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., and de Freitas, N. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pp. 3981-3989, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3981-3989
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
3
-
-
85020546778
-
-
arXiv preprint arXiv:1611.02167
-
Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.
-
(2016)
Designing Neural Network Architectures Using Reinforcement Learning
-
-
Baker, B.1
Gupta, O.2
Naik, N.3
Raskar, R.4
-
4
-
-
70450190492
-
Evolving memory cell structures for sequence learning
-
Springer
-
Bayer, J., Wierstra, D., Togelius, J., and Schmidhuber, J. Evolving memory cell structures for sequence learning. In International Conference on Artificial Neural Networks, pp. 755-764. Springer, 2009.
-
(2009)
International Conference on Artificial Neural Networks
, pp. 755-764
-
-
Bayer, J.1
Wierstra, D.2
Togelius, J.3
Schmidhuber, J.4
-
5
-
-
85057266292
-
-
arXiv preprint arXiv:1709.07417
-
Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. Neural optimizer search with reinforcement learning. arXiv preprint arXiv:1709.07417, 2017.
-
(2017)
Neural Optimizer Search with Reinforcement Learning
-
-
Bello, I.1
Zoph, B.2
Vasudevan, V.3
Le, Q.V.4
-
7
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International Conference on Machine Learning, pp. 115-123, 2013.
-
(2013)
International Conference on Machine Learning
, pp. 115-123
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.3
-
8
-
-
85162384813
-
Algo-rithms for hyper-parameter optimization
-
Bergstra, J. S., Bardenet, R., Bengio, Y., and Kegl, B. Algo-rithms for hyper-parameter optimization. In Advances in neural information processing systems, pp. 2546-2554, 2011.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kegl, B.4
-
9
-
-
85050949672
-
-
arXiv preprint arXiv:1708.05344
-
Brock, A., Lim, T., Ritchie, J. M., and Weston, N. SMASH: One-shot model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.
-
(2017)
SMASH: One-shot Model Architecture Search through Hypernetworks.
-
-
Brock, A.1
Lim, T.2
Ritchie, J.M.3
Weston, N.4
-
10
-
-
85055115822
-
-
arXiv preprint arXiv:1707.04873
-
Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Reinforcement learning for architecture search by network transformation. arXiv preprint arXiv:1707.04873, 2017.
-
(2017)
Reinforcement Learning for Architecture Search by Network Transformation
-
-
Cai, H.1
Chen, T.2
Zhang, W.3
Yu, Y.4
Wang, J.5
-
12
-
-
85057261648
-
Morphnet: Fast & simple resource-constrained structure learning of deep networks
-
abs/1711.06798
-
Gordon, A., Eban, E., Nachum, O., Chen, B., Yang, T., and Choi, E. Morphnet: Fast & simple resource-constrained structure learning of deep networks. CoRR, abs/1711.06798, 2017. URLhttp://arxiv.org/abs/1711.06798.
-
(2017)
CoRR
-
-
Gordon, A.1
Eban, E.2
Nachum, O.3
Chen, B.4
Yang, T.5
Choi, E.6
-
13
-
-
84958985283
-
Learning to learn using gradient descent
-
Springer
-
Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning to learn using gradient descent. In International Conference on Artificial Neural Networks, pp. 87-94. Springer, 2001.
-
(2001)
International Conference on Artificial Neural Networks
, pp. 87-94
-
-
Hochreiter, S.1
Younger, A.S.2
Conwell, P.R.3
-
14
-
-
85046996830
-
Train longer, generalize better: Closing the generalization gap in large batch training of neural networks
-
Hoffer, E., Hubara, I., and Soudry, D. Train longer, generalize better: closing the generalization gap in large batch training of neural networks. In Advances in Neural Information Processing Systems, pp. 1729-1739, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 1729-1739
-
-
Hoffer, E.1
Hubara, I.2
Soudry, D.3
-
15
-
-
85030212949
-
-
arXiv preprint arXiv:1704.04861
-
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
-
(2017)
Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications
-
-
Howard, A.G.1
Zhu, M.2
Chen, B.3
Kalenichenko, D.4
Wang, W.5
Weyand, T.6
Andreetto, M.7
Adam, H.8
-
16
-
-
85050622039
-
-
arXiv preprint arXiv:1711.09846
-
Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., et al. Population based training of neural networks. arXiv preprint arXiv:1711.09846, 2017.
-
(2017)
Population Based Training of Neural Networks
-
-
Jaderberg, M.1
Dalibard, V.2
Osindero, S.3
Czarnecki, W.M.4
Donahue, J.5
Razavi, A.6
Vinyals, O.7
Green, T.8
Dunning, I.9
Simonyan, K.10
-
17
-
-
85010821099
-
An empirical exploration of recurrent network architectures
-
Jozefowicz, R., Zaremba, W., and Sutskever, I. An empirical exploration of recurrent network architectures. In International Conference on Machine Learning, pp. 2342-2350, .
-
International Conference on Machine Learning
, pp. 2342-2350
-
-
Jozefowicz, R.1
Zaremba, W.2
Sutskever, I.3
-
18
-
-
85055111162
-
-
arXiv preprint arXiv:1712.00559
-
Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K. Progressive neural architecture search. arXiv preprint arXiv:1712.00559, 2017a.
-
(2017)
Progressive Neural Architecture Search
-
-
Liu, C.1
Zoph, B.2
Shlens, J.3
Hua, W.4
Li, L.-J.5
Fei-Fei, L.6
Yuille, A.7
Huang, J.8
Murphy, K.9
-
19
-
-
85050612902
-
-
arXiv preprint arXiv:1711.00436
-
Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017b.
-
(2017)
Hierarchical Representations for Efficient Architecture Search
-
-
Liu, H.1
Simonyan, K.2
Vinyals, O.3
Fernando, C.4
Kavukcuoglu, K.5
-
20
-
-
85020496584
-
-
arXiv preprint arXiv:1703.00548
-
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Navruzyan, A., Duffy, N., and Hodjat, B. Evolving deep neural networks. arXiv preprint arXiv:1703.00548, 2017.
-
(2017)
Evolving Deep Neural Networks.
-
-
Miikkulainen, R.1
Liang, J.2
Meyerson, E.3
Rawal, A.4
Fink, D.5
Francon, O.6
Raju, B.7
Navruzyan, A.8
Duffy, N.9
Hodjat, B.10
-
21
-
-
85083952791
-
Faster discovery of neural architectures by searching for paths in a large model
-
Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. Faster discovery of neural architectures by searching for paths in a large model. International Conference on Learning Representations, 2018. URLhttps://openreview.net/forum?id=ByQZjx-0-.Understan.
-
(2018)
International Conference on Learning Representations
-
-
Pham, H.1
Guan, M.Y.2
Zoph, B.3
Le, Q.V.4
Dean, J.5
-
23
-
-
85048592974
-
-
arXiv preprint arXiv:1703.01041
-
Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Le, Q., and Kurakin, A. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041, 2017.
-
(2017)
Large-scale Evolution of Image Classifiers
-
-
Real, E.1
Moore, S.2
Selle, A.3
Saxena, S.4
Suematsu, Y.L.5
Le, Q.6
Kurakin, A.7
-
25
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
26
-
-
84970022032
-
Scalable Bayesian optimization using deep neural networks
-
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, M., and Adams, R. Scalable Bayesian optimization using deep neural networks. In International Conference on Machine Learning, pp. 2171-2180, 2015.
-
(2015)
International Conference on Machine Learning
, pp. 2171-2180
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Patwary, M.7
Prabhat, M.8
Adams, R.9
-
27
-
-
0036594106
-
Evolving neural networks through augmenting topologies
-
Stanley, K. O. and Miikkulainen, R. Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2):99-127, 2002.
-
(2002)
Evolutionary Computation
, vol.10
, Issue.2
, pp. 99-127
-
-
Stanley, K.O.1
Miikkulainen, R.2
-
29
-
-
85051516459
-
-
arXiv preprint arXiv:1703.04813
-
Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G., Denil, M., de Freitas, N., and SohlDickstein, J. Learned optimizers that scale and generalize. arXiv preprint arXiv:1703.04813, 2017.
-
(2017)
Learned Optimizers that Scale and Generalize
-
-
Wichrowska, O.1
Maheswaranathan, N.2
Hoffman, M.W.3
Colmenarejo, S.G.4
Denil, M.5
De Freitas, N.6
SohlDickstein, J.7
-
30
-
-
84941874233
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Springer
-
Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Reinforcement Learning, pp. 5-32. Springer, 1992.
-
(1992)
Reinforcement Learning
, pp. 5-32
-
-
Williams, R.J.1
-
31
-
-
85040676995
-
-
arXiv preprint arXiv:1703.01513
-
Xie, L. and Yuille, A. Genetic cnn. arXiv preprint arXiv:1703.01513, 2017.
-
(2017)
Genetic Cnn
-
-
Xie, L.1
Yuille, A.2
-
33
-
-
85048802871
-
-
arXiv preprint arXiv:1707.07012
-
Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.
-
(2017)
Learning Transferable Architectures for Scalable Image Recognition
-
-
Zoph, B.1
Vasudevan, V.2
Shlens, J.3
Le, Q.V.4
|