-
1
-
-
84959933549
-
Neural machine translation by jointly learning to align and translate
-
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine translation by jointly learning to align and translate. ICLR.
-
(2014)
ICLR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
2
-
-
85079594941
-
Designing neural network architectures using reinforcement learning
-
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2017. Designing neural network architectures using reinforcement learning. ICLR.
-
(2017)
ICLR
-
-
Baker, B.1
Gupta, O.2
Naik, N.3
Raskar, R.4
-
3
-
-
84857855190
-
Random search for hyperparameter optimization
-
Bergstra, J., and Bengio, Y. 2012. Random search for hyperparameter optimization. JMLR.
-
(2012)
JMLR
-
-
Bergstra, J.1
Bengio, Y.2
-
4
-
-
85015327321
-
Real-time bidding by reinforcement learning in display advertising
-
Cai, H.; Ren, K.; Zhang, W.; Malialis, K.; Wang, J.; Yu, Y.; and Guo, D. 2017. Real-time bidding by reinforcement learning in display advertising. In WSDM.
-
(2017)
WSDM
-
-
Cai, H.1
Ren, K.2
Zhang, W.3
Malialis, K.4
Wang, J.5
Yu, Y.6
Guo, D.7
-
5
-
-
84998572411
-
Net2Net: Accelerating learning via knowledge transfer
-
Chen, T.; Goodfellow, I.; and Shlens, J. 2015. Net2net: Accelerating learning via knowledge transfer. ICLR.
-
(2015)
ICLR
-
-
Chen, T.1
Goodfellow, I.2
Shlens, J.3
-
6
-
-
84949921865
-
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
-
Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI.
-
(2015)
IJCAI
-
-
Domhan, T.1
Springenberg, J.T.2
Hutter, F.3
-
8
-
-
84897543523
-
Maxout networks
-
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville, A.; and Bengio, Y. 2013. Maxout networks. ICML.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
9
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both weights and connections for efficient neural network. In NIPS.
-
(2015)
NIPS
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
10
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual learning for image recognition. In CVPR.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84990056336
-
Identity mappings in deep residual networks
-
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity mappings in deep residual networks. In ECCV.
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
14
-
-
84898930479
-
A natural policy gradient
-
Kakade, S. 2002. A natural policy gradient. NIPS.
-
(2002)
NIPS
-
-
Kakade, S.1
-
15
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. ICLR.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
20
-
-
85037035573
-
Towards automatically-tuned neural networks
-
Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J. T.; and Hutter, F. 2016. Towards automatically-tuned neural networks. In Workshop on Automatic Machine Learning.
-
(2016)
Workshop on Automatic Machine Learning
-
-
Mendoza, H.1
Klein, A.2
Feurer, M.3
Springenberg, J.T.4
Hutter, F.5
-
21
-
-
0000072338
-
Designing neural networks using genetic algorithms
-
Morgan Kaufmann Publishers Inc
-
Miller, G. F.; Todd, P. M.; and Hegde, S. U. 1989. Designing neural networks using genetic algorithms. In ICGA. Morgan Kaufmann Publishers Inc.
-
(1989)
ICGA
-
-
Miller, G.F.1
Todd, P.M.2
Hegde, S.U.3
-
23
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng, A. Y. 2011. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
24
-
-
85048592974
-
Large-scale evolution of image classifiers
-
Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y. L.; Le, Q.; and Kurakin, A. 2017. Large-scale evolution of image classifiers. ICML.
-
(2017)
ICML
-
-
Real, E.1
Moore, S.2
Selle, A.3
Saxena, S.4
Suematsu, Y.L.5
Le, Q.6
Kurakin, A.7
-
25
-
-
84969963490
-
Trust region policy optimization
-
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and Moritz, P. 2015. Trust region policy optimization. In ICML.
-
(2015)
ICML
-
-
Schulman, J.1
Levine, S.2
Abbeel, P.3
Jordan, M.I.4
Moritz, P.5
-
27
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the game of go with deep neural networks and tree search. Nature.
-
(2016)
Nature
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
28
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., and Zisserman, A. 2015. Very deep convolutional networks for large-scale image recognition. ICLR.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
29
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical bayesian optimization of machine learning algorithms. In NIPS.
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
32
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013. On the importance of initialization and momentum in deep learning. In ICML.
-
(2013)
ICML
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
33
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to sequence learning with neural networks. In NIPS.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
35
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning.
-
(1992)
Machine Learning
-
-
Williams, R.J.1
-
37
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
Zoph, B., and Le, Q. V. 2017. Neural architecture search with reinforcement learning. ICLR.
-
(2017)
ICLR
-
-
Zoph, B.1
Le, Q.V.2
|