메뉴 건너뛰기




Volumn 36, Issue 9, 2020, Pages 2805-2812

Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 85082017701     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btaa010     Document Type: Article
Times cited : (111)

References (55)
  • 1
    • 9144232912 scopus 로고    scopus 로고
    • UniProt: the universal protein knowledgebase
    • Apweiler, R. et al. (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res., 32, D115-119.
    • (2004) Nucleic Acids Res , vol.32 , pp. D115-D119
    • Apweiler, R.1
  • 2
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley, K. and Yamanishi, Y. (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 3
    • 84871863003 scopus 로고    scopus 로고
    • Aripiprazole, alcohol and substance abuse: a review
    • Brunetti, M. et al. (2012) Aripiprazole, alcohol and substance abuse: a review. Eur. Rev. Med. Pharmacol. Sci., 16, 1346-1354.
    • (2012) Eur. Rev. Med. Pharmacol. Sci , vol.16 , pp. 1346-1354
    • Brunetti, M.1
  • 6
    • 85063161770 scopus 로고    scopus 로고
    • DAKB-GPCRs: an integrated computational platform for drug abuse related GPCRs
    • Chen, M. et al. (2019) DAKB-GPCRs: an integrated computational platform for drug abuse related GPCRs. J. Chem. Inf. Model., 59, 1283-1289.
    • (2019) J. Chem. Inf. Model , vol.59 , pp. 1283-1289
    • Chen, M.1
  • 7
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small-molecule druggability
    • Cheng, A.C. et al. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 25, 71-75.
    • (2007) Nat. Biotechnol , vol.25 , pp. 71-75
    • Cheng, A.C.1
  • 8
    • 84864003584 scopus 로고    scopus 로고
    • Prediction of chemical-protein interactions network with weighted network-based inference method
    • Cheng, F. et al. (2012a) Prediction of chemical-protein interactions network with weighted network-based inference method. PLoS One, 7, e41064.
    • (2012) PLoS One , vol.7 , pp. e41064
    • Cheng, F.1
  • 9
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng, F. et al. (2012b) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503.
    • (2012) PLoS Comput. Biol , vol.8 , pp. e1002503
    • Cheng, F.1
  • 10
    • 85050009917 scopus 로고    scopus 로고
    • Network-based approach to prediction and population-based validation of in silico drug repurposing
    • Cheng, F. et al. (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun., 9, 2691.
    • (2018) Nat. Commun , vol.9 , pp. 2691
    • Cheng, F.1
  • 11
    • 85071178752 scopus 로고    scopus 로고
    • A genome-wide positioning systems network algorithm for in silico drug repurposing
    • Cheng, F. et al. (2019a) A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun., 10, 3476.
    • (2019) Nat. Commun , vol.10 , pp. 3476
    • Cheng, F.1
  • 12
    • 85062852393 scopus 로고    scopus 로고
    • Network-based prediction of drug combinations
    • Cheng, F. et al. (2019b) Network-based prediction of drug combinations. Nat. Commun., 10, 1197.
    • (2019) Nat. Commun , vol.10 , pp. 1197
    • Cheng, F.1
  • 13
    • 85049077548 scopus 로고    scopus 로고
    • A survey on network embedding
    • Cui, P. et al. (2019) A survey on network embedding. IEEE Trans. Knowl. Data Eng., 31, 833-852.
    • (2019) IEEE Trans. Knowl. Data Eng , vol.31 , pp. 833-852
    • Cui, P.1
  • 15
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart, C. and Young, G. (1936) The approximation of one matrix by another of lower rank. Psychometrika, 1, 211-218.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 16
    • 84862192766 scopus 로고    scopus 로고
    • ChEMBL: a large-scale bioactivity database for drug discovery
    • Gaulton, A. et al. (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 40, D1100-1107.
    • (2012) Nucleic Acids Res , vol.40 , pp. D1100-D1107
    • Gaulton, A.1
  • 17
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and gen-omic kernels using Bayesian matrix factorization
    • Gonen, M. (2012) Predicting drug-target interactions from chemical and gen-omic kernels using Bayesian matrix factorization. Bioinformatics, 28, 2304-2310.
    • (2012) Bioinformatics , vol.28 , pp. 2304-2310
    • Gonen, M.1
  • 18
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays
    • Haggarty, S.J. et al. (2003) Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol., 10, 383-396.
    • (2003) Chem. Biol , vol.10 , pp. 383-396
    • Haggarty, S.J.1
  • 19
    • 77950448057 scopus 로고    scopus 로고
    • Predicting drug-target interaction networks based on functional groups and biological features
    • He, Z. et al. (2010) Predicting drug-target interaction networks based on functional groups and biological features. PLoS One, 5, e9603.
    • (2010) PLoS One , vol.5 , pp. e9603
    • He, Z.1
  • 20
    • 38549137931 scopus 로고    scopus 로고
    • The pharmacogenetics and pharmaco-genomics knowledge base: accentuating the knowledge
    • Hernandez-Boussard, T. et al. (2007) The pharmacogenetics and pharmaco-genomics knowledge base: accentuating the knowledge. Nucleic Acids Res., 36, D913-D918.
    • (2007) Nucleic Acids Res , vol.36 , pp. D913-D918
    • Hernandez-Boussard, T.1
  • 21
    • 0022521383 scopus 로고
    • Catatonic reaction to accidental haloperidol overdose: an unrecognized drug abuse risk
    • Hoffman, A.S. et al. (1986) Catatonic reaction to accidental haloperidol overdose: an unrecognized drug abuse risk. J. Nerv. Ment. Dis., 174, 428-430.
    • (1986) J. Nerv. Ment. Dis , vol.174 , pp. 428-430
    • Hoffman, A.S.1
  • 22
    • 33846876695 scopus 로고    scopus 로고
    • Relating protein pharmacology by ligand chemistry
    • Keiser, M.J. et al. (2007) Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 25, 197-206.
    • (2007) Nat. Biotechnol , vol.25 , pp. 197-206
    • Keiser, M.J.1
  • 23
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays
    • Kuruvilla, F.G. et al. (2002) Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature, 416, 653-657.
    • (2002) Nature , vol.416 , pp. 653-657
    • Kuruvilla, F.G.1
  • 24
    • 84891767304 scopus 로고    scopus 로고
    • DrugBank 4.0: shedding new light on drug metabolism
    • Law, V. et al. (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 42, D1091-D1097.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1091-D1097
    • Law, V.1
  • 25
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y. et al. (2015) Deep learning. Nature, 521, 436-444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 26
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu, T. et al. (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 35, D198-201.
    • (2007) Nucleic Acids Res , vol.35 , pp. D198-D201
    • Liu, T.1
  • 27
    • 85060735104 scopus 로고    scopus 로고
    • Group treatment for substance use disorder in adults: a systematic review and meta-analysis of randomized-controlled trials
    • Lo Coco, G. et al. (2019) Group treatment for substance use disorder in adults: a systematic review and meta-analysis of randomized-controlled trials. J. Subst. Abuse Treat., 99, 104-116.
    • (2019) J. Subst. Abuse Treat , vol.99 , pp. 104-116
    • Lo Coco, G.1
  • 28
    • 84862510972 scopus 로고    scopus 로고
    • Large-scale prediction and testing of drug activity on side-effect targets
    • Lounkine, E. et al. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486, 361-367.
    • (2012) Nature , vol.486 , pp. 361-367
    • Lounkine, E.1
  • 29
    • 79952999498 scopus 로고    scopus 로고
    • Differences in efficacy on substance abuse between risperidone and clozapine supports the importance of differential modulation of dopaminergic neurotransmission
    • Machielsen, M.W. and de Haan, L. (2009) Differences in efficacy on substance abuse between risperidone and clozapine supports the importance of differential modulation of dopaminergic neurotransmission. Psychopharmacol. Bull., 42, 40-52.
    • (2009) Psychopharmacol. Bull , vol.42 , pp. 40-52
    • Machielsen, M.W.1    de Haan, L.2
  • 30
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • Mei, J.P. et al. (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245.
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.P.1
  • 31
    • 85059694928 scopus 로고    scopus 로고
    • ChEMBL: towards direct deposition of bioassay data
    • Mendez, D. et al. (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 47, D930-D940.
    • (2019) Nucleic Acids Res , vol.47 , pp. D930-D940
    • Mendez, D.1
  • 32
    • 70349932423 scopus 로고    scopus 로고
    • AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
    • Morris, G.M. et al. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 30, 2785-2791.
    • (2009) J. Comput. Chem , vol.30 , pp. 2785-2791
    • Morris, G.M.1
  • 33
    • 43049158125 scopus 로고    scopus 로고
    • Designing transient binding drugs: a new concept for drug discovery
    • Ohlson, S. (2008) Designing transient binding drugs: a new concept for drug discovery. Drug Discov. Today, 13, 433-439.
    • (2008) Drug Discov. Today , vol.13 , pp. 433-439
    • Ohlson, S.1
  • 34
    • 84925383120 scopus 로고    scopus 로고
    • Toward more realistic drug-target interaction predictions
    • Pahikkala, T. et al. (2015) Toward more realistic drug-target interaction predictions. Brief. Bioinform., 16, 325-337.
    • (2015) Brief. Bioinform , vol.16 , pp. 325-337
    • Pahikkala, T.1
  • 35
    • 84891791940 scopus 로고    scopus 로고
    • The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands
    • Pawson, A.J. et al. (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res., 42, D1098-D1106.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1098-D1106
    • Pawson, A.J.1
  • 36
    • 79951729882 scopus 로고    scopus 로고
    • Combining drug and gene similarity measures for drug-target elucidation
    • Perlman, L. et al. (2011) Combining drug and gene similarity measures for drug-target elucidation. J. Comput. Biol., 18, 133-145.
    • (2011) J. Comput. Biol , vol.18 , pp. 133-145
    • Perlman, L.1
  • 38
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey, M. et al. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 261, 470-489.
    • (1996) J. Mol. Biol , vol.261 , pp. 470-489
    • Rarey, M.1
  • 40
    • 85029364974 scopus 로고    scopus 로고
    • Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells
    • Swathy, B. and Banerjee, M. (2017) Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells. PLoS One, 12, e0184209.
    • (2017) PLoS One , vol.12 , pp. e0184209
    • Swathy, B.1    Banerjee, M.2
  • 42
    • 85059796300 scopus 로고    scopus 로고
    • DrugCentral 2018: an update
    • Ursu, O. et al. (2019) DrugCentral 2018: an update. Nucleic Acids Res., 47, D963-D970.
    • (2019) Nucleic Acids Res , vol.47 , pp. D963-D970
    • Ursu, O.1
  • 43
    • 84879466418 scopus 로고    scopus 로고
    • Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
    • van Laarhoven, T. and Marchiori, E. (2013) Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One, 8, e66952.
    • (2013) PLoS One , vol.8 , pp. e66952
    • van Laarhoven, T.1    Marchiori, E.2
  • 44
    • 85058738885 scopus 로고    scopus 로고
    • NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions
    • Wan, F. et al. (2019) NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics, 35, 104-111.
    • (2019) Bioinformatics , vol.35 , pp. 104-111
    • Wan, F.1
  • 45
    • 85018765908 scopus 로고    scopus 로고
    • Weak-binding molecules are not drugs? Toward a systematic strategy for finding effective weak-binding drugs
    • Wang, J. et al. (2017) Weak-binding molecules are not drugs? Toward a systematic strategy for finding effective weak-binding drugs. Brief. Bioinform., 18, 321-332.
    • (2017) Brief. Bioinform , vol.18 , pp. 321-332
    • Wang, J.1
  • 46
    • 84921709678 scopus 로고    scopus 로고
    • Drug repositioning by integrating target information through a heterogeneous network model
    • Wang, W. et al. (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics, 30, 2923-2930.
    • (2014) Bioinformatics , vol.30 , pp. 2923-2930
    • Wang, W.1
  • 47
    • 84862135579 scopus 로고    scopus 로고
    • A pharmacogenetic study of risperidone on histamine H3 receptor gene (HRH3) in Chinese Han schizophrenia patients
    • Wei, Z. et al. (2012) A pharmacogenetic study of risperidone on histamine H3 receptor gene (HRH3) in Chinese Han schizophrenia patients. J. Psychopharmacol., 26, 813-818.
    • (2012) J. Psychopharmacol , vol.26 , pp. 813-818
    • Wei, Z.1
  • 48
    • 85040924244 scopus 로고    scopus 로고
    • DrugBank 5.0: a major update to the DrugBank database for 2018
    • Wishart, D.S. et al. (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, D1074-D1082.
    • (2018) Nucleic Acids Res , vol.46 , pp. D1074-D1082
    • Wishart, D.S.1
  • 49
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • (Suppl. 2)
    • Xia, Z. et al. (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 4(Suppl. 2), S6.
    • (2010) BMC Syst. Biol , vol.4 , pp. S6
    • Xia, Z.1
  • 50
    • 84976885067 scopus 로고    scopus 로고
    • Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information
    • Yang, H. et al. (2016) Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 44, D1069-D1074.
    • (2016) Nucleic Acids Res , vol.44 , pp. D1069-D1074
    • Yang, H.1
  • 51
    • 85080031447 scopus 로고    scopus 로고
    • Target identification among known drugs by deep learning from heterogeneous networks
    • press
    • Zeng, X. et al. (2020) Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. In press. DOI: 10.1039/C9SC04336E.
    • (2020) Chem. Sci
    • Zeng, X.1
  • 55
    • 85026403314 scopus 로고    scopus 로고
    • Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations
    • Zong, N. et al. (2017) Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations. Bioinformatics, 33, 2337-2344.
    • (2017) Bioinformatics , vol.33 , pp. 2337-2344
    • Zong, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.