메뉴 건너뛰기




Volumn 33, Issue 15, 2017, Pages 2337-2344

Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; DATA MINING; HUMAN; MACHINE LEARNING; PHARMACOLOGY; PROCEDURES; SEMANTIC WEB; SOFTWARE;

EID: 85026403314     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx160     Document Type: Article
Times cited : (175)

References (33)
  • 1
    • 84888872467 scopus 로고    scopus 로고
    • Using networks to measure similarity between genes: Association index selection
    • Bass, J.I.F. et al. (2013) Using networks to measure similarity between genes: association index selection. Nat. Methods, 10, 1169-1176.
    • (2013) Nat. Methods , vol.10 , pp. 1169-1176
    • Bass, J.I.F.1
  • 2
    • 48249158190 scopus 로고    scopus 로고
    • Bio2RDF: Towards a mashup to build bioinformatics knowledge systems
    • Belleau, F. et al. (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf., 41, 706-716.
    • (2008) J. Biomed. Inf. , vol.41 , pp. 706-716
    • Belleau, F.1
  • 4
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley, K. and Yamanishi, Y. (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 5
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos, M. et al. (2008) Drug target identification using side-effect similarity. Science, 321, 263-266.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1
  • 6
    • 84864614370 scopus 로고    scopus 로고
    • Assessing drug target association using semantic linked data
    • Chen, B. et al. (2012a) Assessing drug target association using semantic linked data. PLoS Comput. Biol., 8, e1002574.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002574
    • Chen, B.1
  • 7
    • 84862215494 scopus 로고    scopus 로고
    • Drug-target interaction prediction by random walk on the heterogeneous network
    • Chen, X. et al. (2012b) Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSystems, 8, 1970-1978.
    • (2012) Mol. BioSystems , vol.8 , pp. 1970-1978
    • Chen, X.1
  • 8
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small-molecule druggability
    • Cheng, A.C. et al. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 25, 71-75.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 71-75
    • Cheng, A.C.1
  • 9
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng, F. et al. (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002503
    • Cheng, F.1
  • 10
    • 38549097071 scopus 로고    scopus 로고
    • The universal protein resource (UniProt)
    • Consortium, U. (2008) The universal protein resource (UniProt). Nucleic Acids Res., 36, D190-D195.
    • (2008) Nucleic Acids Res. , vol.36 , pp. D190-D195
    • Consortium, U.1
  • 11
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: A brief review
    • Ding, H. et al. (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief. Bioinf., 15, 734-747.
    • (2014) Brief. Bioinf. , vol.15 , pp. 734-747
    • Ding, H.1
  • 12
    • 34547140875 scopus 로고    scopus 로고
    • The human disease network
    • Goh, K.-I. et al. (2007) The human disease network. Proc. Natl. Acad. Sci. U. S. A., 104, 8685-8690.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 8685-8690
    • Goh, K.-I.1
  • 13
    • 13444266370 scopus 로고    scopus 로고
    • Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
    • Hamosh, A. et al. (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res., 33, D514-D517.
    • (2005) Nucleic Acids Res. , vol.33 , pp. D514-D517
    • Hamosh, A.1
  • 14
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob, L. and Vert, J.-P. (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24, 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2
  • 18
    • 84937444826 scopus 로고    scopus 로고
    • 131-146. Drug-target interaction prediction using semantic similarity and edge partitioning
    • Springer
    • Palma, G. et al. (2014) 131-146. Drug-target interaction prediction using semantic similarity and edge partitioning. In: International Semantic Web Conference. Springer.
    • (2014) International Semantic Web Conference.
    • Palma, G.1
  • 19
    • 79951729882 scopus 로고    scopus 로고
    • Combining drug and gene similarity measures for drug-target elucidation
    • Perlman, L. et al. (2011) Combining drug and gene similarity measures for drug-target elucidation. J. Comput. Biol., 18, 133-145.
    • (2011) J. Comput. Biol. , vol.18 , pp. 133-145
    • Perlman, L.1
  • 21
    • 0035680324 scopus 로고    scopus 로고
    • The HUGO gene nomenclature committee (HGNC)
    • Povey, S. et al. (2001) The HUGO gene nomenclature committee (HGNC). Hum. Genet., 109, 678-680.
    • (2001) Hum. Genet. , vol.109 , pp. 678-680
    • Povey, S.1
  • 22
    • 84939224628 scopus 로고    scopus 로고
    • Optimizing drug-target interaction prediction based on
    • random walk on heterogeneous networks
    • Seal, A. et al. (2015) Optimizing drug-target interaction prediction based on random walk on heterogeneous networks. J. Cheminf., 7, 1.
    • (2015) J. Cheminf. , vol.7 , pp. 1
    • Seal, A.1
  • 24
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • van Laarhoven, T. et al. (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27, 3036-3043.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • Van Laarhoven, T.1
  • 25
    • 77952627289 scopus 로고    scopus 로고
    • Drug-target networks
    • Vogt, I. and Mestres, J. (2010) Drug-target networks. Mol. Inf., 29, 10-14.
    • (2010) Mol. Inf. , vol.29 , pp. 10-14
    • Vogt, I.1    Mestres, J.2
  • 27
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: A knowledgebase for drugs, drug actions and drug targets
    • Wishart, D.S. et al. (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901-D906.
    • (2008) Nucleic Acids Res. , vol.36 , pp. D901-D906
    • Wishart, D.S.1
  • 28
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia, Z. et al. (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 4, S6.
    • (2010) BMC Syst. Biol. , vol.4 , pp. S6
    • Xia, Z.1
  • 29
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi, Y. et al. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240.
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1
  • 30
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi, Y. et al. (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26, i246-i254.
    • (2010) Bioinformatics , vol.26 , pp. i246-i254
    • Yamanishi, Y.1
  • 31
    • 35148838537 scopus 로고    scopus 로고
    • Drug-target network
    • Yildirim, M.A. et al. (2007) Drug-target network. Nat. Biotechnol., 25, 1119-1126.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 1119-1126
    • Yildirim, M.A.1
  • 32
    • 84953871494 scopus 로고    scopus 로고
    • Prediction of drugs having opposite effects on disease genes in a directed network
    • Yu, H. et al. (2016) Prediction of drugs having opposite effects on disease genes in a directed network. BMC Syst. Biol., 10, 17.
    • (2016) BMC Syst. Biol. , vol.10 , pp. 17
    • Yu, H.1
  • 33
    • 27544507236 scopus 로고    scopus 로고
    • A probabilistic model for mining implicit 'chemical compound-gene' relations from literature
    • Zhu, S. et al. (2005) A probabilistic model for mining implicit 'chemical compound-gene' relations from literature. Bioinformatics, 21, ii245-ii251.
    • (2005) Bioinformatics , vol.21 , pp. ii245-ii251
    • Zhu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.