메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1067-1077

LINE: Large-scale information network embedding

Author keywords

Dimension Reduction; Feature Learning; Information Network Embedding; Scalability

Indexed keywords

INFERENCE ENGINES; INFORMATION SERVICES; SCALABILITY; SCHEDULING ALGORITHMS; STOCHASTIC SYSTEMS; VECTOR SPACES; WORLD WIDE WEB;

EID: 84968754224     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2736277.2741093     Document Type: Conference Paper
Times cited : (5882)

References (23)
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, volume 14, pages 585-591, 2001.
    • (2001) NIPS , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 20
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.