-
1
-
-
0030196364
-
Stacked regressions
-
[Breiman, 1996] L. Breiman. Stacked regressions. Machine Learning, 24(1):49-64, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
2
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
[Breiman, 2000] L. Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3):113-120, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 113-120
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
[Breiman, 2001] L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
[Cho et al., 2014] K. Cho, B. van Meriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-gio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724-1734, 2014.
-
(2014)
EMNLP
, pp. 1724-1734
-
-
Cho, K.1
Van Meriënboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Ben-Gio, Y.7
-
5
-
-
0030649484
-
Solving the multiple-instance problem with axis-parallel rectangles
-
[Dietterich et al., 1997] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31-71, 1997.
-
(1997)
Artificial Intelligence
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Pérez, T.3
-
6
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
[Freund and Schapire, 1997] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
84958974700
-
Applying LSTM to time series predictable through time-window approaches
-
[Gers et al., 2001] F. A. Gers, D. Eck, and J. Schmidhuber. Applying LSTM to time series predictable through time-window approaches. In ICANN, pages 669-676, 2001.
-
(2001)
ICANN
, pp. 669-676
-
-
Gers, F.A.1
Eck, D.2
Schmidhuber, J.3
-
8
-
-
84944735469
-
-
MIT Press, Cambridge, MA
-
[Goodfellow et al., 2016] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge, MA, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
9
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
[Graves et al., 2013] A. Graves, A. R. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP, pages 6645-6649, 2013.
-
(2013)
ICASSP
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.R.2
Hinton, G.3
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
[Hinton et al., 2006] G. E. Hinton, S. Osindero, and Y.-W. Simon. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Simon, Y.-W.3
-
11
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
[Hinton et al., 2012] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingbury. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6):82-97, 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingbury, B.11
-
13
-
-
84973896955
-
Deep neural decision forests
-
[Kontschieder et al., 2015] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo. Deep neural decision forests. In ICCV, pages 1467-1475, 2015.
-
(2015)
ICCV
, pp. 1467-1475
-
-
Kontschieder, P.1
Fiterau, M.2
Criminisi, A.3
Bulo, S.R.4
-
14
-
-
84876231242
-
ImageNet classification with deep convolu-tional neural networks
-
[Krizhenvsky et al., 2012] A. Krizhenvsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolu-tional neural networks. In NIPS, pages 1097-1105. 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhenvsky, A.1
Sutskever, I.2
Hinton, G.3
-
15
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
[Kuncheva and Whitaker, 2003] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
52249099075
-
Spectrum of variable-random trees
-
[Liu et al., 2008] F. T. Liu, K. M. Ting, Y. Yu, and Z.-H. Zhou. Spectrum of variable-random trees. Journal of Artificial Intelligence Research, 32:355-384, 2008.
-
(2008)
Journal of Artificial Intelligence Research
, vol.32
, pp. 355-384
-
-
Liu, F.T.1
Ting, K.M.2
Yu, Y.3
Zhou, Z.-H.4
-
19
-
-
84859023447
-
Learning word vectors for sentiment analysis
-
[Maas et al., 2011] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In ACL, pages 142-150, 2011.
-
(2011)
ACL
, pp. 142-150
-
-
Maas, A.L.1
Daly, R.E.2
Pham, P.T.3
Huang, D.4
Ng, A.Y.5
Potts, C.6
-
21
-
-
84898935332
-
A framework for multiple-instance learning
-
[Maron and Lozano-Pérez, 1998] O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In NIPS, pages 570-576. 1998.
-
(1998)
NIPS
, pp. 570-576
-
-
Maron, O.1
Lozano-Pérez, T.2
-
22
-
-
85030477873
-
When and why are deep networks better than shallow ones?
-
[Mhaskar et al., 2017] H. Mhaskar, Q. Liao, and T. A. Pog-gio. When and why are deep networks better than shallow ones? In AAAI, pages 2343-2349, 2017.
-
(2017)
AAAI
, pp. 2343-2349
-
-
Mhaskar, H.1
Liao, Q.2
Pog-Gio, T.A.3
-
23
-
-
0028734063
-
Pa-rameterisation of a stochastic model for human face identification
-
[Samaria and Harter, 1994] F. Samaria and A. C. Harter. Pa-rameterisation of a stochastic model for human face identification. In 2nd IEEE Workshop on Applications of Computer Vision, pages 138-142, 1994.
-
(1994)
2nd IEEE Workshop on Applications of Computer Vision
, pp. 138-142
-
-
Samaria, F.1
Harter, A.C.2
-
24
-
-
84886571160
-
Improving EMG based classification of basic hand movements using EMD
-
[Sapsanis et al., 2013] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos. Improving EMG based classification of basic hand movements using EMD. In 35th Annual International Conference on the IEEE Engineering in Medicine and Biology Society, pages 5754-5757, 2013.
-
(2013)
35th Annual International Conference on the IEEE Engineering in Medicine and Biology Society
, pp. 5754-5757
-
-
Sapsanis, C.1
Georgoulas, G.2
Tzes, A.3
Lymberopoulos, D.4
-
27
-
-
0036648502
-
Musical genre classification of audio signals
-
[Tzanetakis and Cook, 2002] G. Tzanetakis and P. R. Cook. Musical genre classification of audio signals. IEEE Trans. Speech and Audio Processing, 10(5):293-302, 2002.
-
(2002)
IEEE Trans. Speech and Audio Processing
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.R.2
-
28
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
[Viola and Jones, 2001] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, pages 511-518, 2001.
-
(2001)
CVPR
, pp. 511-518
-
-
Viola, P.1
Jones, M.2
-
29
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
[Webb, 2000] G. I. Webb. MultiBoosting: A technique for combining boosting and wagging. Machine Learning, 40(2):159-196, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
30
-
-
84961839061
-
An empirical study on image bag generators for multi-instance learning
-
[Wei and Zhou, 2016] X.-S. Wei and Z.-H. Zhou. An empirical study on image bag generators for multi-instance learning. Machine Learning, 105(2):155-198, 2016.
-
(2016)
Machine Learning
, vol.105
, Issue.2
, pp. 155-198
-
-
Wei, X.-S.1
Zhou, Z.-H.2
-
31
-
-
0026692226
-
Stacked generalization
-
[Wolpert, 1992] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-260, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-260
-
-
Wolpert, D.H.1
|