메뉴 건너뛰기




Volumn 41, Issue 9, 2020, Pages 3446-3479

Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery

Author keywords

[No Author keywords available]

Indexed keywords

ANTENNAS; BACKPROPAGATION; CLASSIFICATION (OF INFORMATION); CONVOLUTION; DECISION TREES; IMAGE ANALYSIS; IMAGE ENHANCEMENT; MAPPING; NETWORK ARCHITECTURE; NEURAL NETWORKS; PESTICIDE EFFECTS; RANDOM PROCESSES; REMOTE SENSING; SUPPORT VECTOR MACHINES; TEXTURES; UNMANNED AERIAL VEHICLES (UAV); WEED CONTROL;

EID: 85077504071     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2019.1706112     Document Type: Article
Times cited : (96)

References (52)
  • 1
    • 77952844108 scopus 로고    scopus 로고
    • Fast High‐Dimensional Filtering Using the Permutohedral Lattice
    • Adams, A., J., Baek, and M. A., Davis. 2010. “Fast High‐Dimensional Filtering Using the Permutohedral Lattice.” Computer Graphics Forum 29 (2): 753–762. doi:10.1111/j.1467-8659.2009.01645.x.
    • (2010) Computer Graphics Forum , vol.29 , Issue.2 , pp. 753-762
    • Adams, A.1    Baek, J.2    Davis, M.A.3
  • 2
    • 85017602253 scopus 로고    scopus 로고
    • Detection of Flavescence Dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
    • Albetis, J., S., Duthoit, F., Guttler, A., Jacquin, M., Goulard, H., Poilvé, J.-B., Féret, et al. 2017. “Detection of Flavescence Dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery.” Remote Sensing 9 (4): 308. doi:10.3390/rs9040308.
    • (2017) Remote Sensing , vol.9 , Issue.4 , pp. 308
    • Albetis, J.1    Duthoit, S.2    Guttler, F.3    Jacquin, A.4    Goulard, M.5    Poilvé, H.6    Féret, J.-B.7
  • 3
    • 0027136392 scopus 로고
    • Using Satellite Data to Map False Broomweed (Ericameria Austrotexana) Infestations on South Texas Rangelands
    • Anderson, G. L., J. H., Everitt, A. J., Richardson, and D. E., Escobar. 1993. “Using Satellite Data to Map False Broomweed (Ericameria Austrotexana) Infestations on South Texas Rangelands.” Weed Technology 7 (4): 865–871. doi:10.1017/S0890037X00037908.
    • (1993) Weed Technology , vol.7 , Issue.4 , pp. 865-871
    • Anderson, G.L.1    Everitt, J.H.2    Richardson, A.J.3    Escobar, D.E.4
  • 4
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation: An Optimization Approach for High Quality Multi-scale Image Segmentation
    • Karlsruhe, Germany: WichmannVerlag
    • Baatz, M., and A., Schäpe. 2000. “Multiresolution Segmentation: An Optimization Approach for High Quality Multi-scale Image Segmentation.” Angewandte Geographische Informationsverarbeitung XII, Karlsruhe, Germany, WichmannVerlag.
    • (2000) Angewandte Geographische Informationsverarbeitung XII
    • Baatz, M.1    Schäpe, A.2
  • 5
    • 84961834117 scopus 로고    scopus 로고
    • Random Forest in Remote Sensing: A Review of Applications and Future Directions
    • Belgiu, M., and L., Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 6
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T., 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 9
    • 0032594951 scopus 로고    scopus 로고
    • Support Vector Machines for Histogram-based Image Classification
    • Chapelle, O., P., Haffner, and V. N., Vapnik. 1999. “Support Vector Machines for Histogram-based Image Classification.” IEEE Transactions on Neural Networks 10 (5): 1055–1064. doi:10.1109/72.788646.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 10
    • 85042712042 scopus 로고    scopus 로고
    • DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    • Chen, L. C., G., Papandreou, I., Kokkinos, K., Murphy, and A. L., Yuille. 2018. “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.” IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (4): 834–848. doi:10.1109/TPAMI.2017.2699184.
    • (2018) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.40 , Issue.4 , pp. 834-848
    • Chen, L.C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 11
    • 84904466762 scopus 로고    scopus 로고
    • A Python-based Open Source System for Geographic Object-based Image Analysis (Geobia) Utilizing Raster Attribute Tables
    • Clewley, D., P., Bunting, J., Shepherd, S., Gillingham, N., Flood, J., Dymond, R., Lucas, et al. 2014. “A Python-based Open Source System for Geographic Object-based Image Analysis (Geobia) Utilizing Raster Attribute Tables.” Remote Sensing 6 (7): 6111–6135. doi:10.3390/rs6076111.
    • (2014) Remote Sensing , vol.6 , Issue.7 , pp. 6111-6135
    • Clewley, D.1    Bunting, P.2    Shepherd, J.3    Gillingham, S.4    Flood, N.5    Dymond, J.6    Lucas, R.7
  • 12
    • 84898446030 scopus 로고    scopus 로고
    • What Is a Good Evaluation Measure for Semantic Segmentation
    • Bristol, UK
    • Csurka, G., D., Larlus, and F., Perronnin. 2013. “What Is a Good Evaluation Measure for Semantic Segmentation.” BMVC, Bristol, UK.
    • (2013) BMVC
    • Csurka, G.1    Larlus, D.2    Perronnin, F.3
  • 13
    • 85042537525 scopus 로고    scopus 로고
    • An Automatic Random Forest-obia Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery
    • de Castro, A., J., Torres-Sánchez, J., Peña, F., Jiménez-Brenes, O., Csillik, and F., López-Granados. 2018. “An Automatic Random Forest-obia Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery.” Remote Sensing 10 (3): 285. doi:10.3390/rs10020285.
    • (2018) Remote Sensing , vol.10 , Issue.3 , pp. 285
    • de Castro, A.1    Torres-Sánchez, J.2    Peña, J.3    Jiménez-Brenes, F.4    Csillik, O.5    López-Granados, F.6
  • 14
    • 80051551703 scopus 로고    scopus 로고
    • An Optimizing Bp Neural Network Algorithm Based on Genetic Algorithm
    • Ding, S., C., Su, and J., Yu. 2011. “An Optimizing Bp Neural Network Algorithm Based on Genetic Algorithm.” Artificial Intelligence Review 36 (2): 153–162. doi:10.1007/s10462-011-9208-z.
    • (2011) Artificial Intelligence Review , vol.36 , Issue.2 , pp. 153-162
    • Ding, S.1    Su, C.2    Yu, J.3
  • 16
    • 53849142529 scopus 로고    scopus 로고
    • Object-oriented Change Detection for the City of Harare, Zimbabwe
    • Gamanya, R., P., De Maeyer, and M., De Dapper. 2009. “Object-oriented Change Detection for the City of Harare, Zimbabwe.” Expert Systems with Applications 36 (1): 571–588. doi:10.1016/j.eswa.2007.09.067.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 571-588
    • Gamanya, R.1    De Maeyer, P.2    De Dapper, M.3
  • 17
    • 84993851351 scopus 로고    scopus 로고
    • Description and Validation of a New Set of Object-based Temporal Geostatistical Features for Land-use/land-cover Change Detection
    • Gil-Yepes, J. L., L. A., Ruiz, J. A., Recio, Á., Balaguer-Beser, and T., Hermosilla. 2016. “Description and Validation of a New Set of Object-based Temporal Geostatistical Features for Land-use/land-cover Change Detection.” ISPRS Journal of Photogrammetry and Remote Sensing 121: 77–91. doi:10.1016/j.isprsjprs.2016.08.010.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.121 , pp. 77-91
    • Gil-Yepes, J.L.1    Ruiz, L.A.2    Recio, J.A.3    Balaguer-Beser, Á.4    Hermosilla, T.5
  • 19
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-resolution Remote Sensing Imagery
    • Hu, F., G. S., Xia, J., Hu, and L., Zhang. 2015. “Transferring Deep Convolutional Neural Networks for the Scene Classification of High-resolution Remote Sensing Imagery.” Remote Sensing 7 (11): 14680–14707. doi:10.3390/rs71114680.
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 20
    • 85046034633 scopus 로고    scopus 로고
    • A Fully Convolutional Network for Weed Mapping of Unmanned Aerial Vehicle (UAV) Imagery
    • Huang, H., J., Deng, Y., Lan, A., Yang, X., Deng, and L., Zhang. 2018a. “A Fully Convolutional Network for Weed Mapping of Unmanned Aerial Vehicle (UAV) Imagery.” PLoS One 13 (4): e196302.
    • (2018) PLoS One , vol.13 , Issue.4
    • Huang, H.1    Deng, J.2    Lan, Y.3    Yang, A.4    Deng, X.5    Zhang, L.6
  • 21
    • 85055732382 scopus 로고    scopus 로고
    • A Two-stage Classification Approach for the Detection of Spider Mite- Infested Cotton Using UAV Multispectral Imagery
    • Huang, H., J., Deng, Y., Lan, A., Yang, X., Deng, L., Zhang, S., Wen, Y., Jiang, G., Suo, and P., Chen 2018b. “A Two-stage Classification Approach for the Detection of Spider Mite- Infested Cotton Using UAV Multispectral Imagery.” Remote Sensing Letters 9 (10): 933–941. doi:10.1080/2150704X.2018.1498600.
    • (2018) Remote Sensing Letters , vol.9 , Issue.10 , pp. 933-941
    • Huang, H.1    Deng, J.2    Lan, Y.3    Yang, A.4    Deng, X.5    Zhang, L.6    Wen, S.7    Jiang, Y.8    Suo, G.9    Chen, P.10
  • 22
    • 85049446282 scopus 로고    scopus 로고
    • A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
    • Huang, H., Y., Lan, J., Deng, A., Yang, X., Deng, L., Zhang, and S., Wen. 2018c. “A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery.” Sensors 18 (7): 2113. doi:10.3390/s18072113.
    • (2018) Sensors , vol.18 , Issue.7 , pp. 2113
    • Huang, H.1    Lan, Y.2    Deng, J.3    Yang, A.4    Deng, X.5    Zhang, L.6    Wen, S.7
  • 23
    • 33750991392 scopus 로고    scopus 로고
    • The Effect of the Mycotoxin of α,β-dehydrocurvularin from Curvularia Eragrostidis on Ps Ii in Digitaria Sanguinalis
    • Jiang, S. J., and S., Qiang. 2005. “The Effect of the Mycotoxin of α,β-dehydrocurvularin from Curvularia Eragrostidis on Ps Ii in Digitaria Sanguinalis.” Scientia Agricultura Sinica38(7): 1373-1378.
    • (2005) Scientia Agricultura Sinica38(7): 1373-1378
    • Jiang, S.J.1    Qiang, S.2
  • 24
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-scale Approach
    • Johnson, B., and Z., Xie. 2011. “Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-scale Approach.” ISPRS Journal of Photogrammetry and Remote Sensing 66 (4): 473–483. doi:10.1016/j.isprsjprs.2011.02.006.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , Issue.4 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 25
    • 84897465786 scopus 로고    scopus 로고
    • Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
    • Krähenbühl, P., and V., Koltun. 2012. “Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials.” arXiv:1210.5644.
    • (2012) arXiv:1210.5644
    • Krähenbühl, P.1    Koltun, V.2
  • 27
    • 84971612769 scopus 로고    scopus 로고
    • Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks
    • Längkvist, M., A., Kiselev, M., Alirezaie, and A., Loutfi. 2016. “Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks.” Remote Sensing 8 (4): 329. doi:10.3390/rs8040329.
    • (2016) Remote Sensing , vol.8 , Issue.4 , pp. 329
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 28
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • Lecun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436–444. doi:10.1038/nature14539.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 30
    • 85046018583 scopus 로고    scopus 로고
    • Breeding and Application of High-quality and Diseaseresistant Rice Variety
    • Liu, Y., H., Wang, T., Guo, J., Zhang, X., Tang, and Z., Chen 2013. “Breeding and Application of High-quality and Diseaseresistant Rice Variety.” Guangdong Agricultural Sciences 10: 8–11.
    • (2013) Guangdong Agricultural Sciences , vol.10 , pp. 8-11
    • Liu, Y.1    Wang, H.2    Guo, T.3    Zhang, J.4    Tang, X.5    Chen, Z.6
  • 31
    • 84939247593 scopus 로고    scopus 로고
    • Early Season Weed Mapping in Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps against Weed Thresholds
    • López-Granados, F., J., Torres-Sánchez, A., Serrano-Pérez, A. I., de Castro, F.-J., Mesas-Carrascosa, and J.-M., Peña. 2016. “Early Season Weed Mapping in Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps against Weed Thresholds.” Precision Agriculture 17 (2): 183–199. doi:10.1007/s11119-015-9415-8.
    • (2016) Precision Agriculture , vol.17 , Issue.2 , pp. 183-199
    • López-Granados, F.1    Torres-Sánchez, J.2    Serrano-Pérez, A.3    de Castro, A.I.4    Mesas-Carrascosa, F.-J.5    Peña, J.-M.6
  • 33
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    •  University of California, Berkeley, USA
    • Macqueen, J., 1965. “Some Methods for Classification and Analysis of Multivariate Observations.” Proc of Berkeley Symposium on Mathematical Statistics & Probability. University of California, Berkeley, USA.
    • (1965) Proc of Berkeley Symposium on Mathematical Statistics & Probability
    • Macqueen, J.1
  • 34
    • 79960941360 scopus 로고    scopus 로고
    • Discrimination of Sterile Oat (Avena sterilis) in Winter Barley (Hordeum vulgare) Using Quickbird Satellite Images
    • Martín, M. P., L., Barreto, and C., Fernández-Quintanilla. 2011. “Discrimination of Sterile Oat (Avena sterilis) in Winter Barley (Hordeum vulgare) Using Quickbird Satellite Images.” Crop Protection 30 (10): 1363–1369. doi:10.1016/j.cropro.2011.06.008.
    • (2011) Crop Protection , vol.30 , Issue.10 , pp. 1363-1369
    • Martín, M.P.1    Barreto, L.2    Fernández-Quintanilla, C.3
  • 36
    • 0029669420 scopus 로고    scopus 로고
    • A Comparative Study of Texture Measures with Classification Based on Feature Distributions
    • Ojala, T., and I., Harwood. 1996. “A Comparative Study of Texture Measures with Classification Based on Feature Distributions.” Pattern Recognition 29 (1): 51–59. doi:10.1016/0031-3203(95)00067-4.
    • (1996) Pattern Recognition , vol.29 , Issue.1 , pp. 51-59
    • Ojala, T.1    Harwood, I.2
  • 37
    • 84911449395 scopus 로고    scopus 로고
    • Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks
    • IEEE, and,.  Columbus, Ohio, USA
    • Oquab, M., L., Bottou, I., Laptev, and J., Sivic. 2014. “Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks.” Computer Vision and Pattern Recognition, IEEE, Columbus, Ohio, USA
    • (2014) Computer Vision and Pattern Recognition
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 39
    • 33947365499 scopus 로고    scopus 로고
    • Mapping Ridolfia Segetum Patches in Sunflower Crop Using Remote Sensing
    • Peña Barragán, J. M., F., López Granados, M., Jurado Expósito, and L., García‐Torres. 2007. “Mapping Ridolfia Segetum Patches in Sunflower Crop Using Remote Sensing.” Weed Research 47 (2): 164–172. doi:10.1111/j.1365-3180.2007.00553.x.
    • (2007) Weed Research , vol.47 , Issue.2 , pp. 164-172
    • Peña Barragán, J.M.1    López Granados, F.2    Jurado Expósito, M.3    García‐Torres, L.4
  • 40
    • 84885398102 scopus 로고    scopus 로고
    • Weed Mapping in Early-season Maize Fields Using Object-based Analysis of Unmanned Aerial Vehicle (UAV) Images
    • Peña JM, Torres-Sánchez J, de Castro AI, Kelly M, and López-Granados F. 2013. “Weed Mapping in Early-season Maize Fields Using Object-based Analysis of Unmanned Aerial Vehicle (UAV) Images.” PloS One 8 (10): e77151. doi:10.1371/journal.pone.0077151.
    • (2013) PloS One , vol.8 , Issue.10
  • 41
    • 85053609099 scopus 로고    scopus 로고
    • Weedmap: A Large-scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming
    • Sa, I., M., Popović, R., Khanna, Z., Chen, P., Lottes, F., Liebisch, and J., Nieto, et al. 2018. “Weedmap: A Large-scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming.” Remote Sensing 10 (9): 1423. doi:10.3390/rs10091423.
    • (2018) Remote Sensing , vol.10 , Issue.9 , pp. 1423
    • Sa, I.1    Popović, M.2    Khanna, R.3    Chen, Z.4    Lottes, P.5    Liebisch, F.6    Nieto, J.7
  • 42
    • 17644437641 scopus 로고    scopus 로고
    • Advanced Support Vector Machines and Kernel Methods
    • Sánchez, A. V. D., 2003. “Advanced Support Vector Machines and Kernel Methods.” Neurocomputing 55 (1–2): 5–20. doi:10.1016/S0925-2312(03)00373-4.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 5-20
    • Sánchez, A.V.D.1
  • 44
    • 85077510249 scopus 로고    scopus 로고
    • February, 18
    • Scikit-Learn. 2019 February 18. https://scikit-learn.org/stable/modules/ensemble.html#forest
    • (2019)
  • 45
    • 85027998504 scopus 로고    scopus 로고
    • A Patch-based Convolutional Neural Network for Remote Sensing Image Classification
    • Sharma, A., X., Liu, X., Yang, and D., Shi. 2017. “A Patch-based Convolutional Neural Network for Remote Sensing Image Classification.” Neural Networks 95: 19–28. doi:10.1016/j.neunet.2017.07.017.
    • (2017) Neural Networks , vol.95 , pp. 19-28
    • Sharma, A.1    Liu, X.2    Yang, X.3    Shi, D.4
  • 46
    • 84959205572 scopus 로고    scopus 로고
    • Fully Convolutional Networks for Semantic Segmentation
    •  Boston, Massachusetts, USA
    • Shelhamer, E., J., Long, and T., Darrell. 2015. “Fully Convolutional Networks for Semantic Segmentation.” CVPR, Boston, Massachusetts, USA.
    • (2015) CVPR
    • Shelhamer, E.1    Long, J.2    Darrell, T.3
  • 47
    • 85068119513 scopus 로고    scopus 로고
    • Operational Large-scale Segmentation of Imagery Based on Iterative Elimination
    • Shepherd, J., P., Bunting, and J., Dymond. 2019. “Operational Large-scale Segmentation of Imagery Based on Iterative Elimination.” Remote Sensing 11 (6): 658. doi:10.3390/rs11060658.
    • (2019) Remote Sensing , vol.11 , Issue.6 , pp. 658
    • Shepherd, J.1    Bunting, P.2    Dymond, J.3
  • 48
    • 85083953063 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-scale Image Recognition
    •  San Diego, CA, USA
    • Simonyan, K., and A., Zisserman. 2015. “Very Deep Convolutional Networks for Large-scale Image Recognition.” ICLR, San Diego, CA, USA.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 49
    • 85060445551 scopus 로고    scopus 로고
    • Convolutional Crfs for Semantic Segmentatio
    • Teichmann, M. T. T., and R., Cipolla. 2018. “Convolutional Crfs for Semantic Segmentatio.” arXiv:180504777.
    • (2018) arXiv:180504777
    • Teichmann, M.T.T.1    Cipolla, R.2
  • 50
    • 84874595926 scopus 로고    scopus 로고
    • Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management
    • Torres-Sánchez, J., F., López-Granados, A. I., De Castro, and J. M., Peña-Barragán. 2013. “Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management.” PloS One 8 (3): e58210. doi:10.1371/journal.pone.0058210.
    • (2013) PloS One , vol.8 , Issue.3
    • Torres-Sánchez, J.1    López-Granados, F.2    De Castro, A.I.3    Peña-Barragán, J.M.4
  • 51
    • 0032594959 scopus 로고    scopus 로고
    • An Overview of Statistical Learning Theory
    • Vapnik, V. N., 1999. “An Overview of Statistical Learning Theory.” IEEE Transactions on Neural Networks 10 (5): 988–999. doi:10.1109/72.788640.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 52
    • 85006821297 scopus 로고    scopus 로고
    • Mechanism of Resistance to Cyhalofop-butyl in Chinese Sprangletop (Leptochloa chinensis (L.) Nees)
    • Yu, J., H., Gao, L., Pan, Z., Yao, and L., Dong. 2017. “Mechanism of Resistance to Cyhalofop-butyl in Chinese Sprangletop (Leptochloa chinensis (L.) Nees).” Pesticide Biochemistry and Physiology 143: 306–311. doi:10.1016/j.pestbp.2016.11.001.
    • (2017) Pesticide Biochemistry and Physiology , vol.143 , pp. 306-311
    • Yu, J.1    Gao, H.2    Pan, L.3    Yao, Z.4    Dong, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.