-
1
-
-
84885398102
-
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
-
Journal Article; Research Support, Non-U.S. Gov’t. 2013-01-20
-
Pena JM, Torres-Sanchez J, de Castro AI, Kelly M, Lopez-Granados F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLOS ONE. [Journal Article; Research Support, Non-U.S. Gov’t]. 2013 2013-01-20; 8(10):e77151.
-
(2013)
PLOS ONE
, vol.8
, Issue.10
, pp. e77151
-
-
Pena, J.M.1
Torres-Sanchez, J.2
De Castro, A.I.3
Kelly, M.4
Lopez-Granados, F.5
-
2
-
-
84939247593
-
Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds
-
López-Granados F, Torres-Sánchez J, Serrano-Pérez A, de Castro AI, Mesas-Carrascosa FJ, Peña J. Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds. PRECIS AGRIC. 2016; 17(2):183–99.
-
(2016)
PRECIS AGRIC
, vol.17
, Issue.2
, pp. 183-199
-
-
López-Granados, F.1
Torres-Sánchez, J.2
Serrano-Pérez, A.3
De Castro, A.I.4
Mesas-Carrascosa, F.J.5
Peña, J.6
-
3
-
-
77956916079
-
Current status and future directions of precision aerial application for site-specific crop management in the USA
-
Lan Y, Thomson SJ, Huang Y, Hoffmann WC, Zhang H. Current status and future directions of precision aerial application for site-specific crop management in the USA. COMPUT ELECTRON AGR. 2010; 74 (1):34–8.
-
(2010)
COMPUT ELECTRON AGR
, vol.74
, Issue.1
, pp. 34-38
-
-
Lan, Y.1
Thomson, S.J.2
Huang, Y.3
Hoffmann, W.C.4
Zhang, H.5
-
4
-
-
33644766213
-
Detecting Late-Season Weed Infestations in Soybean (Glycine max)1
-
KOGER CH, SHAW DR, WATSON CE, REDDY KN. Detecting Late-Season Weed Infestations in Soybean (Glycine max)1. WEED TECHNOL. 2003; 17(4):696–704.
-
(2003)
WEED TECHNOL
, vol.17
, Issue.4
, pp. 696-704
-
-
Koger, C.H.1
Shaw, D.R.2
Watson, C.E.3
Reddy, K.N.4
-
6
-
-
84941766152
-
A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method
-
Pérez-Ortiz M, Peña JM, Gutiérrez PA, Torres-Sánchez J, Hervás-Martínez C, López-Granados F. A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. APPL SOFT COMPUT. 2015; 37:533–44.
-
(2015)
APPL SOFT COMPUT
, vol.37
, pp. 533-544
-
-
Pérez-Ortiz, M.1
Peña, J.M.2
Gutiérrez, P.A.3
Torres-Sánchez, J.4
Hervás-Martínez, C.5
López-Granados, F.6
-
7
-
-
84983462453
-
Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize
-
Castaldi F, Pelosi F, Pascucci S, Casa R. Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. PRECIS AGRIC. 2017; 18(1):76–94.
-
(2017)
PRECIS AGRIC
, vol.18
, Issue.1
, pp. 76-94
-
-
Castaldi, F.1
Pelosi, F.2
Pascucci, S.3
Casa, R.4
-
8
-
-
85028708486
-
Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images
-
Alexandridis TK, Tamouridou AA, Pantazi XE, Lagopodi AL, Kashefi J, Ovakoglou G, et al. Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images. SENSORS-BASEL. 2017; 17(9):2007.
-
(2017)
SENSORS-BASEL
, vol.17
, Issue.9
, pp. 2007
-
-
Alexandridis, T.K.1
Tamouridou, A.A.2
Pantazi, X.E.3
Lagopodi, A.L.4
Kashefi, J.5
Ovakoglou, G.6
-
9
-
-
85032857331
-
Application of multilayer perceptron with automatic relevance determination on weed mapping using uav multispectral imagery
-
Tamouridou A, Alexandridis T, Pantazi X, Lagopodi A, Kashefi J, Kasampalis D, et al. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery. SENSORS-BASEL. 2017; 17(12):2307.
-
(2017)
SENSORS-BASEL
, vol.17
, Issue.12
, pp. 2307
-
-
Tamouridou, A.1
Alexandridis, T.2
Pantazi, X.3
Lagopodi, A.4
Kashefi, J.5
Kasampalis, D.6
-
10
-
-
85013626573
-
A convolutional neural network approach for assisting avalanche search and rescue operations with UAV Imagery
-
Bejiga MB, Nouffidj AZA, Melgani F. A Convolutional Neural Network Approach for Assisting Avalanche Search and Rescue Operations with UAV Imagery. REMOTE SENS-BASEL. 2017; 100(9).
-
(2017)
REMOTE SENS-BASEL
, vol.100
, Issue.9
-
-
Bejiga, M.B.1
Nouffidj, A.Z.A.2
Melgani, F.3
-
11
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
Hu F, Xia GS, Hu J, Zhang L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. REMOTE SENS-BASEL. 2015(7):14680–707.
-
(2015)
REMOTE SENS-BASEL
, Issue.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.S.2
Hu, J.3
Zhang, L.4
-
12
-
-
84971612769
-
Classification and segmentation of satellite orthoimagery using convolutional neural networks
-
Längkvist M, Kiselev A, Alirezaie M, Loutfi A. Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. REMOTE SENS-BASEL. 2016; 329(8).
-
(2016)
REMOTE SENS-BASEL
, vol.329
, Issue.8
-
-
Längkvist, M.1
Kiselev, A.2
Alirezaie, M.3
Loutfi, A.4
-
13
-
-
85019898857
-
Classification for high resolution remote sensing imagery using a fully convolutional network
-
Fu G, Liu C, Zhou R, Sun T, Zhang Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. REMOTE SENS-BASEL. 2017; 6(9):498.
-
(2017)
REMOTE SENS-BASEL
, vol.6
, Issue.9
, pp. 498
-
-
Fu, G.1
Liu, C.2
Zhou, R.3
Sun, T.4
Zhang, Q.5
-
16
-
-
85046018583
-
Breeding and application of high-quality and disea-seresistant rice variety, huahang No.31
-
Liu Y, Wang H, Guo T, Zhang J, Tang X, Chen Z. Breeding and application of high-quality and disea-seresistant rice variety, huahang No.31. Guangdong Agricultural Sciences. 2013(10):8–11.
-
(2013)
Guangdong Agricultural Sciences
, Issue.10
, pp. 8-11
-
-
Liu, Y.1
Wang, H.2
Guo, T.3
Zhang, J.4
Tang, X.5
Chen, Z.6
-
17
-
-
85046015743
-
Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)
-
Yu J, Gao H, Pan L, Yao Z, Dong L. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). PESTIC BIOCHEM PHYS. 2016.
-
(2016)
PESTIC BIOCHEM PHYS
-
-
Yu, J.1
Gao, H.2
Pan, L.3
Yao, Z.4
Dong, L.5
-
18
-
-
0032016748
-
The lethal effects of cyperus iria on aedes aegypti
-
Schwartz AM, Paskewitz SM, Orth AP, Tesch MJ, Toong YC. The lethal effects of Cyperus iria on Aedes aegypti. J AM MOSQUITO CONTR. 1998; 1(14):78–82.
-
(1998)
J AM MOSQUITO CONTR
, vol.1
, Issue.14
, pp. 78-82
-
-
Schwartz, A.M.1
Paskewitz, S.M.2
Orth, A.P.3
Tesch, M.J.4
Toong, Y.C.5
-
19
-
-
85046035600
-
-
accessed on 14 November 2017
-
Phantom_4_Pro_Pro_Plus_User_Manual_EN. https://dl.djicdn.com/downloads/phantom_4_pro/20171017/Phantom_4_Pro_Pro_Plus_User_Manual_EN.pdf/ (accessed on 14 November 2017).
-
Phantom_4_Pro_Pro_Plus_User_Manual_EN
-
-
-
20
-
-
85046014129
-
-
8. accessed on 14 November 2017
-
GS_Pro_User_Manual_EN_V1.8. https://dl.djicdn.com/downloads/groundstation_pro/20170831/GS_Pro_User_Manual_EN_V1.8.pdf/ (accessed on 14 November 2017).
-
GS_Pro_User_Manual_EN_V1
-
-
-
22
-
-
84930630277
-
Deep learning
-
2015-05-27; PMID: 26017442
-
LeCun Y, Bengio Y, Hinton G. Deep learning. NATURE. 2015 2015-05-27; 521(7553):436–44. https://doi.org/10.1038/nature14539 PMID: 26017442
-
(2015)
NATURE
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
23
-
-
84904482223
-
-
Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. 2013.
-
(2013)
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
-
24
-
-
85198028989
-
-
Editor, editor; 2009. Pub Place: IEEE;
-
Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Editor, editor; 2009. Pub Place: IEEE; 2009. p. 248–55.
-
(2009)
ImageNet: A Large-Scale Hierarchical Image Database
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.4
Li, K.5
Fei-Fei, L.6
-
26
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
Maggiori E, Tarabalka Y, Charpiat G, Alliez P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE T GEOSCI REMOTE. 2016; 55(2):645–57.
-
(2016)
IEEE T GEOSCI REMOTE
, vol.55
, Issue.2
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
29
-
-
85046026741
-
-
9
-
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S. Going deeper with convolutions. arXiv:1409.4842v1. 2014; 9.
-
(2014)
Going Deeper with Convolutions
, vol.9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
-
31
-
-
84898446030
-
What is a good evaluation measure for semantic segmentation?
-
Csurka G, Larlus D, Perronnin F. What is a good evaluation measure for semantic segmentation? BMVC. 2013; 27:2013.
-
(2013)
BMVC
, vol.27
, pp. 2013
-
-
Csurka, G.1
Larlus, D.2
Perronnin, F.3
-
33
-
-
85027998504
-
A patch-based convolutional neural network for remote sensing image classification
-
PMID: 28843092
-
Sharma A, Liu X, Yang X, Shi D. A patch-based convolutional neural network for remote sensing image classification. Neural Networks. 2017; 95:19–28. https://doi.org/10.1016/j.neunet.2017.07.017 PMID: 28843092
-
(2017)
Neural Networks
, vol.95
, pp. 19-28
-
-
Sharma, A.1
Liu, X.2
Yang, X.3
Shi, D.4
|