메뉴 건너뛰기




Volumn 13, Issue 4, 2018, Pages

A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CHINA; HUMAN; HUMAN EXPERIMENT; IMAGERY; NONHUMAN; PREDICTION; RICE; TRANSFER OF LEARNING; AGRICULTURE; AIRCRAFT; ALGORITHM; GUIDED IMAGERY; ORYZA; PHYSIOLOGY; PLANT; PROCEDURES; REMOTE SENSING; SOFTWARE; STATISTICAL MODEL; WEED;

EID: 85046034633     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0196302     Document Type: Article
Times cited : (150)

References (33)
  • 1
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
    • Journal Article; Research Support, Non-U.S. Gov’t. 2013-01-20
    • Pena JM, Torres-Sanchez J, de Castro AI, Kelly M, Lopez-Granados F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLOS ONE. [Journal Article; Research Support, Non-U.S. Gov’t]. 2013 2013-01-20; 8(10):e77151.
    • (2013) PLOS ONE , vol.8 , Issue.10 , pp. e77151
    • Pena, J.M.1    Torres-Sanchez, J.2    De Castro, A.I.3    Kelly, M.4    Lopez-Granados, F.5
  • 3
    • 77956916079 scopus 로고    scopus 로고
    • Current status and future directions of precision aerial application for site-specific crop management in the USA
    • Lan Y, Thomson SJ, Huang Y, Hoffmann WC, Zhang H. Current status and future directions of precision aerial application for site-specific crop management in the USA. COMPUT ELECTRON AGR. 2010; 74 (1):34–8.
    • (2010) COMPUT ELECTRON AGR , vol.74 , Issue.1 , pp. 34-38
    • Lan, Y.1    Thomson, S.J.2    Huang, Y.3    Hoffmann, W.C.4    Zhang, H.5
  • 4
    • 33644766213 scopus 로고    scopus 로고
    • Detecting Late-Season Weed Infestations in Soybean (Glycine max)1
    • KOGER CH, SHAW DR, WATSON CE, REDDY KN. Detecting Late-Season Weed Infestations in Soybean (Glycine max)1. WEED TECHNOL. 2003; 17(4):696–704.
    • (2003) WEED TECHNOL , vol.17 , Issue.4 , pp. 696-704
    • Koger, C.H.1    Shaw, D.R.2    Watson, C.E.3    Reddy, K.N.4
  • 5
  • 7
    • 84983462453 scopus 로고    scopus 로고
    • Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize
    • Castaldi F, Pelosi F, Pascucci S, Casa R. Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. PRECIS AGRIC. 2017; 18(1):76–94.
    • (2017) PRECIS AGRIC , vol.18 , Issue.1 , pp. 76-94
    • Castaldi, F.1    Pelosi, F.2    Pascucci, S.3    Casa, R.4
  • 9
    • 85032857331 scopus 로고    scopus 로고
    • Application of multilayer perceptron with automatic relevance determination on weed mapping using uav multispectral imagery
    • Tamouridou A, Alexandridis T, Pantazi X, Lagopodi A, Kashefi J, Kasampalis D, et al. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery. SENSORS-BASEL. 2017; 17(12):2307.
    • (2017) SENSORS-BASEL , vol.17 , Issue.12 , pp. 2307
    • Tamouridou, A.1    Alexandridis, T.2    Pantazi, X.3    Lagopodi, A.4    Kashefi, J.5    Kasampalis, D.6
  • 10
    • 85013626573 scopus 로고    scopus 로고
    • A convolutional neural network approach for assisting avalanche search and rescue operations with UAV Imagery
    • Bejiga MB, Nouffidj AZA, Melgani F. A Convolutional Neural Network Approach for Assisting Avalanche Search and Rescue Operations with UAV Imagery. REMOTE SENS-BASEL. 2017; 100(9).
    • (2017) REMOTE SENS-BASEL , vol.100 , Issue.9
    • Bejiga, M.B.1    Nouffidj, A.Z.A.2    Melgani, F.3
  • 11
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu F, Xia GS, Hu J, Zhang L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. REMOTE SENS-BASEL. 2015(7):14680–707.
    • (2015) REMOTE SENS-BASEL , Issue.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 12
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • Längkvist M, Kiselev A, Alirezaie M, Loutfi A. Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. REMOTE SENS-BASEL. 2016; 329(8).
    • (2016) REMOTE SENS-BASEL , vol.329 , Issue.8
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 13
    • 85019898857 scopus 로고    scopus 로고
    • Classification for high resolution remote sensing imagery using a fully convolutional network
    • Fu G, Liu C, Zhou R, Sun T, Zhang Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. REMOTE SENS-BASEL. 2017; 6(9):498.
    • (2017) REMOTE SENS-BASEL , vol.6 , Issue.9 , pp. 498
    • Fu, G.1    Liu, C.2    Zhou, R.3    Sun, T.4    Zhang, Q.5
  • 16
    • 85046018583 scopus 로고    scopus 로고
    • Breeding and application of high-quality and disea-seresistant rice variety, huahang No.31
    • Liu Y, Wang H, Guo T, Zhang J, Tang X, Chen Z. Breeding and application of high-quality and disea-seresistant rice variety, huahang No.31. Guangdong Agricultural Sciences. 2013(10):8–11.
    • (2013) Guangdong Agricultural Sciences , Issue.10 , pp. 8-11
    • Liu, Y.1    Wang, H.2    Guo, T.3    Zhang, J.4    Tang, X.5    Chen, Z.6
  • 17
    • 85046015743 scopus 로고    scopus 로고
    • Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)
    • Yu J, Gao H, Pan L, Yao Z, Dong L. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). PESTIC BIOCHEM PHYS. 2016.
    • (2016) PESTIC BIOCHEM PHYS
    • Yu, J.1    Gao, H.2    Pan, L.3    Yao, Z.4    Dong, L.5
  • 19
    • 85046035600 scopus 로고    scopus 로고
    • accessed on 14 November 2017
    • Phantom_4_Pro_Pro_Plus_User_Manual_EN. https://dl.djicdn.com/downloads/phantom_4_pro/20171017/Phantom_4_Pro_Pro_Plus_User_Manual_EN.pdf/ (accessed on 14 November 2017).
    • Phantom_4_Pro_Pro_Plus_User_Manual_EN
  • 20
    • 85046014129 scopus 로고    scopus 로고
    • 8. accessed on 14 November 2017
    • GS_Pro_User_Manual_EN_V1.8. https://dl.djicdn.com/downloads/groundstation_pro/20170831/GS_Pro_User_Manual_EN_V1.8.pdf/ (accessed on 14 November 2017).
    • GS_Pro_User_Manual_EN_V1
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • 2015-05-27; PMID: 26017442
    • LeCun Y, Bengio Y, Hinton G. Deep learning. NATURE. 2015 2015-05-27; 521(7553):436–44. https://doi.org/10.1038/nature14539 PMID: 26017442
    • (2015) NATURE , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 26
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional neural networks for large-scale remote-sensing image classification
    • Maggiori E, Tarabalka Y, Charpiat G, Alliez P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE T GEOSCI REMOTE. 2016; 55(2):645–57.
    • (2016) IEEE T GEOSCI REMOTE , vol.55 , Issue.2 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 31
    • 84898446030 scopus 로고    scopus 로고
    • What is a good evaluation measure for semantic segmentation?
    • Csurka G, Larlus D, Perronnin F. What is a good evaluation measure for semantic segmentation? BMVC. 2013; 27:2013.
    • (2013) BMVC , vol.27 , pp. 2013
    • Csurka, G.1    Larlus, D.2    Perronnin, F.3
  • 33
    • 85027998504 scopus 로고    scopus 로고
    • A patch-based convolutional neural network for remote sensing image classification
    • PMID: 28843092
    • Sharma A, Liu X, Yang X, Shi D. A patch-based convolutional neural network for remote sensing image classification. Neural Networks. 2017; 95:19–28. https://doi.org/10.1016/j.neunet.2017.07.017 PMID: 28843092
    • (2017) Neural Networks , vol.95 , pp. 19-28
    • Sharma, A.1    Liu, X.2    Yang, X.3    Shi, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.