메뉴 건너뛰기




Volumn , Issue , 2017, Pages 3024-3031

UAV-based crop and weed classification for smart farming

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURE; CROPS; FEATURE EXTRACTION; ROBOTICS; SUGAR BEETS; UNMANNED AERIAL VEHICLES (UAV);

EID: 85028026239     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICRA.2017.7989347     Document Type: Conference Paper
Times cited : (348)

References (23)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 84912137635 scopus 로고    scopus 로고
    • Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
    • J. Geipel, J. Link, and W. Claupein. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sensing, 6(11):10335, 2014.
    • (2014) Remote Sensing , vol.6 , Issue.11 , pp. 10335
    • Geipel, J.1    Link, J.2    Claupein, W.3
  • 5
    • 84878353036 scopus 로고    scopus 로고
    • Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model
    • W. Guo, U. K. Rage, and S. Ninomiya. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96:58-66, 2013.
    • (2013) Computers and Electronics in Agriculture , vol.96 , pp. 58-66
    • Guo, W.1    Rage, U.K.2    Ninomiya, S.3
  • 6
    • 84969174961 scopus 로고    scopus 로고
    • A survey of image processing techniques for plant extraction and segmentation in the field
    • E. Hamuda, M. Glavin, and E. Jones. A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184-199, 2016.
    • (2016) Computers and Electronics in Agriculture , vol.125 , pp. 184-199
    • Hamuda, E.1    Glavin, M.2    Jones, E.3
  • 7
    • 0036100190 scopus 로고    scopus 로고
    • How sustainable agriculture can address the environmental and human health harms of industrial agriculture
    • L. Horrigan, R. S. Lawrence, and P. Walker. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect, 110:445-56, 2002.
    • (2002) Environ Health Perspect , vol.110 , pp. 445-456
    • Horrigan, L.1    Lawrence, R.S.2    Walker, P.3
  • 8
    • 84939801268 scopus 로고    scopus 로고
    • Sugar beet (beta vulgaris l.) and thistle (cirsium arvensis l.) discrimination based on field spectral data
    • G. R. F. Jose, D. Wulfsohn, and J. Rasmussen. Sugar beet (beta vulgaris l.) and thistle (cirsium arvensis l.) discrimination based on field spectral data. Biosystems Engineering, 139:1-15, 2015.
    • (2015) Biosystems Engineering , vol.139 , pp. 1-15
    • Jose, G.R.F.1    Wulfsohn, D.2    Rasmussen, J.3
  • 11
    • 85027972924 scopus 로고    scopus 로고
    • Effective visionbased classification for separating sugar beets and weeds for precision farming
    • P. Lottes, M. Höferlin, S. Sander, and C. Stachniss. Effective visionbased classification for separating sugar beets and weeds for precision farming. Journal of Field Robotics, 2016.
    • (2016) Journal of Field Robotics
    • Lottes, P.1    Höferlin, M.2    Sander, S.3    Stachniss, C.4
  • 12
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • G. E. Meyer and J. C Neto. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2):282-293, 2008.
    • (2008) Computers and Electronics in Agriculture , vol.63 , Issue.2 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2
  • 16
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using objectbased analysis of unmanned aerial vehicle uav images
    • J. M. Peña, J. Torres-Sánchez, A. I. de Castro, M. Kelly, and F. López-Granados. Weed mapping in early-season maize fields using objectbased analysis of unmanned aerial vehicle uav images. PLoS ONE, 8, 2013.
    • (2013) PLoS ONE , pp. 8
    • Peña, J.M.1    Torres-Sánchez, J.2    De Castro, A.I.3    Kelly, M.4    López-Granados, F.5
  • 17
    • 84928668178 scopus 로고    scopus 로고
    • Quantifying efficacy and limits of unmanned aerial vehicle uav technology for weed seedling detection as affected by sensor resolution
    • J. M. Peña, J. Torres-Sánchez, A. Serrano-Perez, A. I. de Castro, and F. López-Granados. Quantifying efficacy and limits of unmanned aerial vehicle uav technology for weed seedling detection as affected by sensor resolution. Sensors, 15(3), 2015.
    • (2015) Sensors , vol.15 , Issue.3
    • Peña, J.M.1    Torres-Sánchez, J.2    Serrano-Perez, A.3    De Castro, A.I.4    López-Granados, F.5
  • 23
    • 84926633657 scopus 로고    scopus 로고
    • An automatic object-based method for optimal thresholding in uav images: Application for vegetation detection in herbaceous crops
    • J. Torres-Sanchez, F. López-Granados, and J. M. Peña. An automatic object-based method for optimal thresholding in uav images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114:43-52, 2015.
    • (2015) Computers and Electronics in Agriculture , vol.114 , pp. 43-52
    • Torres-Sanchez, J.1    López-Granados, F.2    Peña, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.