-
1
-
-
85015967484
-
Rab GTPases: Master regulators that establish the secretory and endocytic pathways
-
28292916,; PMID:,; https://.org/
-
Pfeffer SR. Rab GTPases: Master regulators that establish the secretory and endocytic pathways. Mol Biol Cell 2017; 28:712-5; PMID:28292916; https://doi.org/10.1091/mbc.E16-10-0737
-
(2017)
Mol Biol Cell
, vol.28
, pp. 712-715
-
-
Pfeffer, S.R.1
-
2
-
-
84946037451
-
Cellular functions of Rab GTPases at a glance
-
26272922,; PMID:,; https://.org/
-
Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci 2015; 128:3171-6; PMID:26272922; https://doi.org/10.1242/jcs.166074
-
(2015)
J Cell Sci
, vol.128
, pp. 3171-3176
-
-
Zhen, Y.1
Stenmark, H.2
-
3
-
-
0037627408
-
Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest
-
12702770,; PMID:,; https://.org/
-
Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 2003; 100:5437-42; PMID:12702770; https://doi.org/10.1073/pnas.0737613100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 5437-5442
-
-
Fratti, R.A.1
Chua, J.2
Vergne, I.3
Deretic, V.4
-
4
-
-
84880831979
-
Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues
-
23923000,; PMID:,; https://.org/
-
Puri RV, Reddy PV, Tyagi AK. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PloS One 2013; 8:e70514; PMID:23923000; https://doi.org/10.1371/journal.pone.0070514
-
(2013)
PloS One
, vol.8
-
-
Puri, R.V.1
Reddy, P.V.2
Tyagi, A.K.3
-
5
-
-
38849091401
-
Characterization of a Listeria monocytogenes protein interfering with Rab5a
-
18088303, et al.,; PMID:,; https://.org/
-
Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L, Vandekerckhove J, Pareja E, Tobes R, Gomez-Lopez MT, Del Cerro-Vadillo E, Fresno M, Leyva-Cobián F, et al. Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 2008; 9:325-37; PMID:18088303; https://doi.org/10.1111/j.1600-0854.2007.00683.x
-
(2008)
Traffic
, vol.9
, pp. 325-337
-
-
Alvarez-Dominguez, C.1
Madrazo-Toca, F.2
Fernandez-Prieto, L.3
Vandekerckhove, J.4
Pareja, E.5
Tobes, R.6
Gomez-Lopez, M.T.7
Del Cerro-Vadillo, E.8
Fresno, M.9
Leyva-Cobián, F.10
-
6
-
-
0035968220
-
SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes
-
11316807,; PMID:,; https://.org/
-
Mukherjee K, Parashuraman S, Raje M, Mukhopadhyay A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 2001; 276:23607-15; PMID:11316807; https://doi.org/10.1074/jbc.M101034200
-
(2001)
J Biol Chem
, vol.276
, pp. 23607-23615
-
-
Mukherjee, K.1
Parashuraman, S.2
Raje, M.3
Mukhopadhyay, A.4
-
7
-
-
50249176472
-
SopB promotes phosphatidylinositol 3-phosphate formation on salmonella vacuoles by recruiting Rab5 and Vps34
-
18725540,; PMID:,; https://.org/
-
Mallo GV, Espina M, Smith AC, Terebiznik MR, Aleman A, Finlay BB, Rameh LE, Grinstein S, Brumell JH. SopB promotes phosphatidylinositol 3-phosphate formation on salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 2008; 182:741-52; PMID:18725540; https://doi.org/10.1083/jcb.200804131
-
(2008)
J Cell Biol
, vol.182
, pp. 741-752
-
-
Mallo, G.V.1
Espina, M.2
Smith, A.C.3
Terebiznik, M.R.4
Aleman, A.5
Finlay, B.B.6
Rameh, L.E.7
Grinstein, S.8
Brumell, J.H.9
-
8
-
-
84945255271
-
Molecular pathogenesis of Ehrlichia chaffeensis infection
-
26488275,; PMID:,; https://.org/
-
Rikihisa Y. Molecular pathogenesis of Ehrlichia chaffeensis infection. Annu Rev Microbiol 2015; 69:283-304; PMID:26488275; https://doi.org/10.1146/annurev-micro-091014-104411
-
(2015)
Annu Rev Microbiol
, vol.69
, pp. 283-304
-
-
Rikihisa, Y.1
-
9
-
-
84887265439
-
Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells
-
24098122,; PMID:,; https://.org/
-
Mohan Kumar D, Yamaguchi M, Miura K, Lin M, Los M, Coy JF, Rikihisa Y. Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 2013; 9:e1003666; PMID:24098122; https://doi.org/10.1371/journal.ppat.1003666
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003666
-
-
Mohan Kumar, D.1
Yamaguchi, M.2
Miura, K.3
Lin, M.4
Los, M.5
Coy, J.F.6
Rikihisa, Y.7
-
10
-
-
0030959591
-
Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor
-
9119487,; PMID
-
Barnewall RE, Rikihisa Y, Lee EH. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect Immun 1997; 65:1455-61; PMID:9119487
-
(1997)
Infect Immun
, vol.65
, pp. 1455-1461
-
-
Barnewall, R.E.1
Rikihisa, Y.2
Lee, E.H.3
-
11
-
-
84988416865
-
Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase
-
27541856,; PMID:,; https://.org/
-
Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, Rikihisa Y. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy 2016; 12:2145-66; PMID:27541856; https://doi.org/10.1080/15548627.2016.1217369
-
(2016)
Autophagy
, vol.12
, pp. 2145-2166
-
-
Lin, M.1
Liu, H.2
Xiong, Q.3
Niu, H.4
Cheng, Z.5
Yamamoto, A.6
Rikihisa, Y.7
-
12
-
-
77955051827
-
Rab GEFs and GAPs
-
20466531,; PMID:,; https://.org/
-
Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol 2010; 22:461-70; PMID:20466531; https://doi.org/10.1016/j.ceb.2010.04.007
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 461-470
-
-
Barr, F.1
Lambright, D.G.2
-
13
-
-
84877829941
-
Microbial quest for food in vivo: ‘Nutritional virulence’ as an emerging paradigm
-
23490329,; PMID:,; https://.org/
-
Abu Kwaik Y, Bumann D. Microbial quest for food in vivo: ‘Nutritional virulence’ as an emerging paradigm. Cell Microbiol 2013; 15:882-90; PMID:23490329; https://doi.org/10.1111/cmi.12138
-
(2013)
Cell Microbiol
, vol.15
, pp. 882-890
-
-
Abu Kwaik, Y.1
Bumann, D.2
-
14
-
-
38849200959
-
Subversion of cellular autophagy by Anaplasma phagocytophilum
-
17979984,; PMID:,; https://.org/
-
Niu H, Yamaguchi M, Rikihisa Y. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 2008; 10:593-605; PMID:17979984; https://doi.org/10.1111/j.1462-5822.2007.01068.x
-
(2008)
Cell Microbiol
, vol.10
, pp. 593-605
-
-
Niu, H.1
Yamaguchi, M.2
Rikihisa, Y.3
-
15
-
-
84877317415
-
Ats-1: A novel bacterial molecule that links autophagy to bacterial nutrition
-
23388398,; PMID:,; https://.org/
-
Niu H, Rikihisa Y. Ats-1: A novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 2013; 9:787-8; PMID:23388398; https://doi.org/10.4161/auto.23693
-
(2013)
Autophagy
, vol.9
, pp. 787-788
-
-
Niu, H.1
Rikihisa, Y.2
-
16
-
-
84871385890
-
Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection
-
23197835,; PMID:,; https://.org/
-
Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 2012; 109:20800-7; PMID:23197835; https://doi.org/10.1073/pnas.1218674109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 20800-20807
-
-
Niu, H.1
Xiong, Q.2
Yamamoto, A.3
Hayashi-Nishino, M.4
Rikihisa, Y.5
-
17
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
20811353,; PMID:,; https://.org/
-
Yang Z, Klionsky DJ. Eaten alive: A history of macroautophagy. Nat Cell Biol 2010; 12:814-22; PMID:20811353; https://doi.org/10.1038/ncb0910-814
-
(2010)
Nat Cell Biol
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
18
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
22078875,; PMID:,; https://.org/
-
Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011; 147:728-41; PMID:22078875; https://doi.org/10.1016/j.cell.2011.10.026
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
19
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
19820708,; PMID:,; https://.org/
-
Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215-21; PMID:19820708; https://doi.org/10.1038/ni.1800
-
(2009)
Nat Immunol
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
von Muhlinen, N.4
Randow, F.5
-
20
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
19749745, et al.,; PMID:,; https://.org/
-
Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11:1233-40; PMID:19749745; https://doi.org/10.1038/ncb1967
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
Ogawa, M.2
Hain, T.3
Yoshida, M.4
Fukumatsu, M.5
Kim, M.6
Mimuro, H.7
Nakagawa, I.8
Yanagawa, T.9
Ishii, T.10
-
21
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
-
19683680,; PMID:,; https://.org/
-
Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009; 6:137-49; PMID:19683680; https://doi.org/10.1016/j.chom.2009.07.005
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-149
-
-
Dupont, N.1
Lacas-Gervais, S.2
Bertout, J.3
Paz, I.4
Freche, B.5
Van Nhieu, G.T.6
van der Goot, F.G.7
Sansonetti, P.J.8
Lafont, F.9
-
22
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
19812211,; PMID:,; https://.org/
-
Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183:5909-16; PMID:19812211; https://doi.org/10.4049/jimmunol.0900441
-
(2009)
J Immunol
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
23
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
15607973,; PMID:,; https://.org/
-
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-66; PMID:15607973; https://doi.org/10.1016/j.cell.2004.11.038
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
24
-
-
77957682295
-
ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
-
41 e1-2, 20637199,; PMID:,; https://.org/
-
Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010; 139:1630-41. 41 e1-2; PMID:20637199; https://doi.org/10.1053/j.gastro.2010.07.006
-
(2010)
Gastroenterology
, vol.139
, pp. 1630-1641
-
-
Homer, C.R.1
Richmond, A.L.2
Rebert, N.A.3
Achkar, J.P.4
McDonald, C.5
-
25
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
18843052,; PMID:,; https://.org/
-
Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360-72; PMID:18843052; https://doi.org/10.1091/mbc.E08-01-0080
-
(2008)
Mol Biol Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
26
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
23685627,; PMID:,; https://.org/
-
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15:741-50; PMID:23685627; https://doi.org/10.1038/ncb2757
-
(2013)
Nat Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
27
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
21258367,; PMID:,; https://.org/
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41; PMID:21258367; https://doi.org/10.1038/ncb2152
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
28
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
19074260,; PMID:,; https://.org/
-
Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 2008; 105:20567-74; PMID:19074260; https://doi.org/10.1073/pnas.0810611105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
29
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
18524774,; PMID:,; https://.org/
-
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283:22847-57; PMID:18524774; https://doi.org/10.1074/jbc.M802182200
-
(2008)
J Biol Chem
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
Mizushima, T.4
Ezaki, J.5
Ueno, T.6
Kominami, E.7
Yamane, T.8
Tanaka, K.9
Komatsu, M.10
-
30
-
-
84886897936
-
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
-
24100292, et al.,; PMID:,; https://.org/
-
Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y, Umemoto T, Saitoh T, Nakatogawa H, Kobayashi S, et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 2013; 203:115-28; PMID:24100292; https://doi.org/10.1083/jcb.201304188
-
(2013)
J Cell Biol
, vol.203
, pp. 115-128
-
-
Fujita, N.1
Morita, E.2
Itoh, T.3
Tanaka, A.4
Nakaoka, M.5
Osada, Y.6
Umemoto, T.7
Saitoh, T.8
Nakatogawa, H.9
Kobayashi, S.10
-
31
-
-
84890293210
-
The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication
-
24331465, et al.,; PMID:,; https://.org/
-
Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, Davies MR, Schulz BL, Nizet V, Teasdale RD, et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2013; 14:675-82; PMID:24331465; https://doi.org/10.1016/j.chom.2013.11.003
-
(2013)
Cell Host Microbe
, vol.14
, pp. 675-682
-
-
Barnett, T.C.1
Liebl, D.2
Seymour, L.M.3
Gillen, C.M.4
Lim, J.Y.5
Larock, C.N.6
Davies, M.R.7
Schulz, B.L.8
Nizet, V.9
Teasdale, R.D.10
-
32
-
-
84876850002
-
A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy
-
23420491, et al.,; PMID:,; https://.org/
-
Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N, Doran A, Guirado E, Schlesinger LS, et al. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 2013; 43:1333-44; PMID:23420491; https://doi.org/10.1002/eji.201242835
-
(2013)
Eur J Immunol
, vol.43
, pp. 1333-1344
-
-
Khweek, A.A.1
Caution, K.2
Akhter, A.3
Abdulrahman, B.A.4
Tazi, M.5
Hassan, H.6
Majumdar, N.7
Doran, A.8
Guirado, E.9
Schlesinger, L.S.10
-
33
-
-
75249092539
-
Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins
-
20053580,; PMID:,; https://.org/
-
Rikihisa Y, Lin M. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 2010; 13:59-66; PMID:20053580; https://doi.org/10.1016/j.mib.2009.12.008
-
(2010)
Curr Opin Microbiol
, vol.13
, pp. 59-66
-
-
Rikihisa, Y.1
Lin, M.2
-
34
-
-
33645865541
-
Type IV secretion systems and their effectors in bacterial pathogenesis
-
16529981,; PMID:,; https://.org/
-
Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 2006; 9:207-17; PMID:16529981; https://doi.org/10.1016/j.mib.2006.02.008
-
(2006)
Curr Opin Microbiol
, vol.9
, pp. 207-217
-
-
Backert, S.1
Meyer, T.F.2
-
35
-
-
0032555641
-
Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes
-
9705327,; PMID:,; https://.org/
-
Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 1998; 273:21883-92; PMID:9705327; https://doi.org/10.1074/jbc.273.34.21883
-
(1998)
J Biol Chem
, vol.273
, pp. 21883-21892
-
-
Berg, T.O.1
Fengsrud, M.2
Stromhaug, P.E.3
Berg, T.4
Seglen, P.O.5
-
36
-
-
84876086849
-
Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation
-
23434372, et al.,; PMID:,; https://.org/
-
Dou Z, Pan JA, Dbouk HA, Ballou LM, Deleon JL, Fan Y, Chen JS, Liang Z, Li G, Backer JM, et al. Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 2013; 50:29-42; PMID:23434372; https://doi.org/10.1016/j.molcel.2013.01.022
-
(2013)
Mol Cell
, vol.50
, pp. 29-42
-
-
Dou, Z.1
Pan, J.A.2
Dbouk, H.A.3
Ballou, L.M.4
Deleon, J.L.5
Fan, Y.6
Chen, J.S.7
Liang, Z.8
Li, G.9
Backer, J.M.10
-
37
-
-
80054978956
-
Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy
-
21835792,; PMID:,; https://.org/
-
Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 2011; 85:10561-71; PMID:21835792; https://doi.org/10.1128/JVI.00173-11
-
(2011)
J Virol
, vol.85
, pp. 10561-10571
-
-
Su, W.C.1
Chao, T.C.2
Huang, Y.L.3
Weng, S.C.4
Jeng, K.S.5
Lai, M.M.6
-
38
-
-
46249127490
-
Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease
-
18430781,; PMID:,; https://.org/
-
Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 2008; 121:1649-60; PMID:18430781; https://doi.org/10.1242/jcs.025726
-
(2008)
J Cell Sci
, vol.121
, pp. 1649-1660
-
-
Ravikumar, B.1
Imarisio, S.2
Sarkar, S.3
O'Kane, C.J.4
Rubinsztein, D.C.5
-
39
-
-
1842766144
-
Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins
-
15068806,; PMID:,; https://.org/
-
Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 2004; 14:95-104; PMID:15068806; https://doi.org/10.1016/S1097-2765(04)00151-0
-
(2004)
Mol Cell
, vol.14
, pp. 95-104
-
-
Venkatraman, P.1
Wetzel, R.2
Tanaka, M.3
Nukina, N.4
Goldberg, A.L.5
-
40
-
-
70350380897
-
Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity
-
19690053,; PMID:,; https://.org/
-
Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E. Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci 2009; 122:3262-71; PMID:19690053; https://doi.org/10.1242/jcs.045567
-
(2009)
J Cell Sci
, vol.122
, pp. 3262-3271
-
-
Raspe, M.1
Gillis, J.2
Krol, H.3
Krom, S.4
Bosch, K.5
van Veen, H.6
Reits, E.7
-
41
-
-
32644434386
-
Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease
-
16476778,; PMID:,; https://.org/
-
Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. J Cell Biol 2006; 172:605-18; PMID:16476778; https://doi.org/10.1083/jcb.200509091
-
(2006)
J Cell Biol
, vol.172
, pp. 605-618
-
-
Pal, A.1
Severin, F.2
Lommer, B.3
Shevchenko, A.4
Zerial, M.5
-
42
-
-
84873675881
-
A novel ER-localized transmembrane protein, EMC6, interacts with RAB5A and regulates cell autophagy
-
23182941,; PMID:,; https://.org/
-
Li Y, Zhao Y, Hu J, Xiao J, Qu L, Wang Z, Ma D, Chen Y. A novel ER-localized transmembrane protein, EMC6, interacts with RAB5A and regulates cell autophagy. Autophagy 2013; 9:150-63; PMID:23182941; https://doi.org/10.4161/auto.22742
-
(2013)
Autophagy
, vol.9
, pp. 150-163
-
-
Li, Y.1
Zhao, Y.2
Hu, J.3
Xiao, J.4
Qu, L.5
Wang, Z.6
Ma, D.7
Chen, Y.8
-
43
-
-
84905384306
-
The nutrient stress-induced small GTPase Rab5 contributes to the activation of vesicle trafficking and vacuolar activity
-
24923442,; PMID:,; https://.org/
-
Nakatsukasa K, Kanada A, Matsuzaki M, Byrne SD, Okumura F, Kamura T. The nutrient stress-induced small GTPase Rab5 contributes to the activation of vesicle trafficking and vacuolar activity. J Biol Chem 2014; 289:20970-8; PMID:24923442; https://doi.org/10.1074/jbc.M114.548297
-
(2014)
J Biol Chem
, vol.289
, pp. 20970-20978
-
-
Nakatsukasa, K.1
Kanada, A.2
Matsuzaki, M.3
Byrne, S.D.4
Okumura, F.5
Kamura, T.6
-
44
-
-
84964269948
-
The integration of autophagy and cellular trafficking pathways via RAB GAPs
-
26565612,; PMID:,; https://.org/
-
Kern A, Dikic I, Behl C. The integration of autophagy and cellular trafficking pathways via RAB GAPs. Autophagy 2015; 11:2393-7; PMID:26565612; https://doi.org/10.1080/15548627.2015.1110668
-
(2015)
Autophagy
, vol.11
, pp. 2393-2397
-
-
Kern, A.1
Dikic, I.2
Behl, C.3
-
45
-
-
84991039873
-
Rabs and GAPs in starvation-induced autophagy
-
27669114,; PMID:,; https://.org/
-
Lamb CA, Longatti A, Tooze SA. Rabs and GAPs in starvation-induced autophagy. Small GTPases 2016; 7:265-9; PMID:27669114; https://doi.org/10.1080/21541248.2016.1220779
-
(2016)
Small GTPases
, vol.7
, pp. 265-269
-
-
Lamb, C.A.1
Longatti, A.2
Tooze, S.A.3
-
46
-
-
34250802413
-
Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels
-
16874067,; PMID:,; https://.org/
-
Sneve ML, Overbye A, Fengsrud M, Seglen PO. Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 2005; 1:157-62; PMID:16874067; https://doi.org/10.4161/auto.1.3.2037
-
(2005)
Autophagy
, vol.1
, pp. 157-162
-
-
Sneve, M.L.1
Overbye, A.2
Fengsrud, M.3
Seglen, P.O.4
-
47
-
-
67650258765
-
In vitro reconstitution of fusion between immature autophagosomes and endosomes
-
19337031,; PMID:,; https://.org/
-
Morvan J, Kochl R, Watson R, Collinson LM, Jefferies HB, Tooze SA. In vitro reconstitution of fusion between immature autophagosomes and endosomes. Autophagy 2009; 5:676-89; PMID:19337031; https://doi.org/10.4161/auto.5.5.8378
-
(2009)
Autophagy
, vol.5
, pp. 676-689
-
-
Morvan, J.1
Kochl, R.2
Watson, R.3
Collinson, L.M.4
Jefferies, H.B.5
Tooze, S.A.6
-
48
-
-
0025362656
-
In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome
-
2166050,; PMID:,; https://.org/
-
Tooze J, Hollinshead M, Ludwig T, Howell K, Hoflack B, Kern H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 1990; 111:329-45; PMID:2166050; https://doi.org/10.1083/jcb.111.2.329
-
(1990)
J Cell Biol
, vol.111
, pp. 329-345
-
-
Tooze, J.1
Hollinshead, M.2
Ludwig, T.3
Howell, K.4
Hoflack, B.5
Kern, H.6
-
49
-
-
26844531363
-
Maturation of autophagic vacuoles in mammalian cells
-
16874026,; PMID:,; https://.org/
-
Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy 2005; 1:1-10; PMID:16874026; https://doi.org/10.4161/auto.1.1.1270
-
(2005)
Autophagy
, vol.1
, pp. 1-10
-
-
Eskelinen, E.L.1
-
50
-
-
57649195400
-
Autophagy and multivesicular bodies: Two closely related partners
-
19008921,; PMID:,; https://.org/
-
Fader CM, Colombo MI. Autophagy and multivesicular bodies: Two closely related partners. Cell Death Differ 2009; 16:70-8; PMID:19008921; https://doi.org/10.1038/cdd.2008.168
-
(2009)
Cell Death Differ
, vol.16
, pp. 70-78
-
-
Fader, C.M.1
Colombo, M.I.2
-
51
-
-
23944437499
-
An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway
-
16103228, et al.,; PMID:,; https://.org/
-
Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 2005; 170:607-18; PMID:16103228; https://doi.org/10.1083/jcb.200505128
-
(2005)
J Cell Biol
, vol.170
, pp. 607-618
-
-
Shin, H.W.1
Hayashi, M.2
Christoforidis, S.3
Lacas-Gervais, S.4
Hoepfner, S.5
Wenk, M.R.6
Modregger, J.7
Uttenweiler-Joseph, S.8
Wilm, M.9
Nystuen, A.10
-
52
-
-
0035494493
-
Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation
-
11581283,; PMID:,; https://.org/
-
Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19-25; PMID:11581283; https://doi.org/10.1083/jcb.200107069
-
(2001)
J Cell Biol
, vol.155
, pp. 19-25
-
-
Vieira, O.V.1
Botelho, R.J.2
Rameh, L.3
Brachmann, S.M.4
Matsuo, T.5
Davidson, H.W.6
Schreiber, A.7
Backer, J.M.8
Cantley, L.C.9
Grinstein, S.10
-
53
-
-
0034282751
-
Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells
-
10970851,; PMID:,; https://.org/
-
Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000; 19:4577-88; PMID:10970851; https://doi.org/10.1093/emboj/19.17.4577
-
(2000)
EMBO J
, vol.19
, pp. 4577-4588
-
-
Gillooly, D.J.1
Morrow, I.C.2
Lindsay, M.3
Gould, R.4
Bryant, N.J.5
Gaullier, J.M.6
Parton, R.G.7
Stenmark, H.8
|