메뉴 건너뛰기




Volumn 55, Issue , 2016, Pages 278-288

A survey of anomaly detection techniques in financial domain

Author keywords

Anomaly detection; Clustering; Fraud detection

Indexed keywords

BEHAVIORAL RESEARCH; CRIME; FINANCE; GENE EXPRESSION; SURVEYS;

EID: 84950263717     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2015.01.001     Document Type: Article
Times cited : (423)

References (80)
  • 8
    • 84894826357 scopus 로고    scopus 로고
    • Survey of clustering based financial fraud detection research
    • A.S. Sabau Survey of clustering based financial fraud detection research Inform. Econ. 16 1 2012 110 122
    • (2012) Inform. Econ. , vol.16 , Issue.1 , pp. 110-122
    • Sabau, A.S.1
  • 9
    • 77649273505 scopus 로고    scopus 로고
    • COG: Local decomposition for rare class analysis
    • J. Wu, H. Xiong, and J. Chen COG: local decomposition for rare class analysis Data Min. Knowl. Discov. 20 2 2010 191 220
    • (2010) Data Min. Knowl. Discov. , vol.20 , Issue.2 , pp. 191-220
    • Wu, J.1    Xiong, H.2    Chen, J.3
  • 10
    • 33750951681 scopus 로고    scopus 로고
    • A comprehensive survey of data mining-based fraud detection research
    • C. Phua, V. Lee, K. Smith, and R. Gayler A comprehensive survey of data mining-based fraud detection research Artif. Intell. Rev. 2005 1 14
    • (2005) Artif. Intell. Rev. , pp. 1-14
    • Phua, C.1    Lee, V.2    Smith, K.3    Gayler, R.4
  • 11
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • A. Patcha, and J.-M. Park An overview of anomaly detection techniques: existing solutions and latest technological trends Comput. Netw. 51 12 2007 3448 3470
    • (2007) Comput. Netw. , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 12
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge, and J. Austin A survey of outlier detection methodologies Artif. Intell. Rev. 22 2 2004 85 126
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 13
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 2: Neural network based approaches
    • M. Markou, and S. Singh Novelty detection: a review - part 2: neural network based approaches Signal Process. 83 2003 2499 2521
    • (2003) Signal Process. , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 16
    • 84954391894 scopus 로고    scopus 로고
    • American Heritage Dictionary. URL: (accessed 29.11.13).
    • American Heritage Dictionary. URL: http://www.ahdictionary.com (accessed 29.11.13).
  • 19
    • 84954404276 scopus 로고    scopus 로고
    • FBI: White Collar Crime. URL: (accessed 29.11.13).
    • FBI: White Collar Crime. URL: http://www.fbi.gov (accessed 29.11.13).
  • 20
    • 84954389001 scopus 로고    scopus 로고
    • 2013/2014 Global Fraud Report. URL: (accessed 29.11.13).
    • 2013/2014 Global Fraud Report. URL: http://www.kroll.com (accessed 29.11.13).
  • 21
    • 84954365694 scopus 로고    scopus 로고
    • European ATM skimming machine your credit card's new worst enemy in Australian crime first. URL: (accessed 29.11.13).
    • European ATM skimming machine your credit card's new worst enemy in Australian crime first. URL: http://www.couriermail.com.au/news (accessed 29.11.13).
  • 22
    • 84954372187 scopus 로고    scopus 로고
    • Insurance Fraud Bureau of Australia. URL: (accessed 29.11.13).
    • Insurance Fraud Bureau of Australia. URL: http://www.ifba.org.au (accessed 29.11.13).
  • 33
    • 85048646242 scopus 로고    scopus 로고
    • Discovering cluster based local outliers
    • Z. He, X. Xu, and S. Deng Discovering cluster based local outliers Pattern Recognit. Lett. 2003 2003 9 10
    • (2003) Pattern Recognit. Lett. , vol.2003 , pp. 9-10
    • He, Z.1    Xu, X.2    Deng, S.3
  • 36
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • VLDB'94 Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • R.T. Ng, and J. Han Efficient and effective clustering methods for spatial data mining Proceedings of the 20th International Conference on Very Large Data Bases VLDB'94 1994 Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 144 155
    • (1994) Proceedings of the 20th International Conference on Very Large Data Bases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 37
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • R.T. Ng, and J. Han CLARANS: a method for clustering objects for spatial data mining IEEE Trans. Knowl. Data Eng. 14 5 2002 1003 1016
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 38
    • 0001218972 scopus 로고
    • Clustering and the continuous k-means algorithm
    • V. Faber Clustering and the continuous k-means algorithm Los Alamos Sci. 22 1994 138 144
    • (1994) Los Alamos Sci. , vol.22 , pp. 138-144
    • Faber, V.1
  • 39
    • 84929070780 scopus 로고    scopus 로고
    • Acceleration of k-means and related clustering algorithms
    • D. Mount, C. Stein, Lecture Notes in Computer Science Springer Berlin, Heidelberg
    • S. Phillips Acceleration of k-means and related clustering algorithms D. Mount, C. Stein, Algorithm Engineering and Experiments Lecture Notes in Computer Science vol. 2409 2002 Springer Berlin, Heidelberg 166 177
    • (2002) Algorithm Engineering and Experiments , vol.2409 , pp. 166-177
    • Phillips, S.1
  • 44
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Min. Knowl. Discov. 2 3 1998 283 304
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 45
    • 12344287532 scopus 로고    scopus 로고
    • K-means clustering with outlier detection, mixed variables and missing values
    • M. Schwaiger, O. Opitz, Studies in Classification, Data Analysis, and Knowledge Organization Springer Berlin, Heidelberg
    • D. Wishart k-means clustering with outlier detection, mixed variables and missing values M. Schwaiger, O. Opitz, Exploratory Data Analysis in Empirical Research Studies in Classification, Data Analysis, and Knowledge Organization 2003 Springer Berlin, Heidelberg 216 226
    • (2003) Exploratory Data Analysis in Empirical Research , pp. 216-226
    • Wishart, D.1
  • 47
    • 80053152751 scopus 로고    scopus 로고
    • Cluster analysis for anomaly detection in accounting data: An audit approach
    • S. Thiprungsri, and M. Vasarhelyi Cluster analysis for anomaly detection in accounting data: an audit approach Int. J. Digit. Account. Res. 11 2011 69 84
    • (2011) Int. J. Digit. Account. Res. , vol.11 , pp. 69-84
    • Thiprungsri, S.1    Vasarhelyi, M.2
  • 52
    • 84954392948 scopus 로고    scopus 로고
    • SAS: Business Intelligence Software. URL: (accessed 29.11.13).
    • SAS: Business Intelligence Software. URL: http://www.sas.com (accessed 29.11.13).
  • 53
    • 84954379382 scopus 로고    scopus 로고
    • Yahoo!Taiwan. URL: (accessed 29.11.13).
    • Yahoo!Taiwan. URL: http://www.tw.yahoo.com (accessed 29.11.13).
  • 54
    • 84954361525 scopus 로고    scopus 로고
    • ANOVA Analysis. URL: (accessed 29.11.13).
    • ANOVA Analysis. URL: http://www.csse.monash.edu.au/~smarkham/resources/anova.htm (accessed 29.11.13).
  • 55
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proc. IEEE 78 9 1990 1464 1480
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 56
    • 42949110140 scopus 로고    scopus 로고
    • An efficient clustering scheme to exploit hierarchical data in network traffic analysis
    • A.N. Mahmood, C. Leckie, and P. Udaya An efficient clustering scheme to exploit hierarchical data in network traffic analysis IEEE Trans. Knowl. Data Eng. 20 6 2008 752 767
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.6 , pp. 752-767
    • Mahmood, A.N.1    Leckie, C.2    Udaya, P.3
  • 59
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim ROCK: A robust clustering algorithm for categorical attributes Inf. Syst. 25 5 2000 345 366
    • (2000) Inf. Syst. , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 60
    • 78651078395 scopus 로고    scopus 로고
    • A computational model for financial reporting fraud detection
    • F.H. Glancy, and S.B. Yadav A computational model for financial reporting fraud detection Decis. Support Syst. 50 3 2011 595 601
    • (2011) Decis. Support Syst. , vol.50 , Issue.3 , pp. 595-601
    • Glancy, F.H.1    Yadav, S.B.2
  • 61
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • T. Moon The expectation-maximization algorithm IEEE Signal Process. Mag. 13 6 1996 47 60
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.1
  • 63
    • 84881066607 scopus 로고    scopus 로고
    • 22nd International Joint Conference on Artificial Intelligence
    • L. Torgo, E. Lopes, Utility-based fraud detection, in: 22nd International Joint Conference on Artificial Intelligence, 2011, pp. 1517-1522.
    • (2011) Utility-based Fraud Detection , pp. 1517
    • Torgo, L.1    Lopes, E.2
  • 66
    • 77049104323 scopus 로고    scopus 로고
    • A framework for internal fraud risk reduction at it integrating business processes: The IFR2 framework
    • N. Lybaert, M. Jans, and K. Vanhoof A framework for internal fraud risk reduction at it integrating business processes: the IFR2 framework Int. J. Digit. Account. Res. 9 2009
    • (2009) Int. J. Digit. Account. Res. , vol.9
    • Lybaert, N.1    Jans, M.2    Vanhoof, K.3
  • 67
    • 77049099784 scopus 로고    scopus 로고
    • Internal fraud risk reduction: Results of a data mining case study
    • M. Jans, N. Lybaert, and K. Vanhoof Internal fraud risk reduction: Results of a data mining case study Int. J. Account. Inform. Syst. 11 1 2010 17 41
    • (2010) Int. J. Account. Inform. Syst. , vol.11 , Issue.1 , pp. 17-41
    • Jans, M.1    Lybaert, N.2    Vanhoof, K.3
  • 70
    • 67349218861 scopus 로고    scopus 로고
    • Credit card fraud detection: A fusion approach using Dempster-Shafer theory and Bayesian learning
    • S. Panigrahi, A. Kundu, S. Sural, and A. Majumdar Credit card fraud detection: A fusion approach using Dempster-Shafer theory and Bayesian learning Inform. Fusion 10 4 2009 354 363
    • (2009) Inform. Fusion , vol.10 , Issue.4 , pp. 354-363
    • Panigrahi, S.1    Kundu, A.2    Sural, S.3    Majumdar, A.4
  • 71
    • 84905030612 scopus 로고    scopus 로고
    • A data mining with hybrid approach based transaction risk score generation model (TRSGM) for fraud detection of online financial transaction
    • Published by Foundation of Computer Science
    • D.J.N. Dharwa, and D.A.R. Patel A data mining with hybrid approach based transaction risk score generation model (TRSGM) for fraud detection of online financial transaction Int. J. Comput. Appl. 16 1 2011 18 25 Published by Foundation of Computer Science
    • (2011) Int. J. Comput. Appl. , vol.16 , Issue.1 , pp. 18-25
    • Dharwa, D.J.N.1    Patel, D.A.R.2
  • 74
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim Efficient algorithms for mining outliers from large data sets SIGMOD Rec. 29 2 2000 427 438
    • (2000) SIGMOD Rec. , vol.29 , Issue.2 , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 75
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander LOF: identifying density-based local outliers SIGMOD Rec. 29 2 2000 93 104
    • (2000) SIGMOD Rec. , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.-P.2    Ng, R.T.3    Sander, J.4
  • 77
    • 84954379805 scopus 로고    scopus 로고
    • 1999 KDD Cup Dataset. URL: (accessed 21.12.13).
    • 1999 KDD Cup Dataset. URL: www.kdd.ics.uci.edu (accessed 21.12.13).
  • 78
    • 84954397372 scopus 로고    scopus 로고
    • The full dataset derived from about a month's background traffic and simulated attacks. URL: (accessed 21.12.13).
    • The full dataset derived from about a month's background traffic and simulated attacks. URL: http://seit.unsw.adfa.edu.au/staff/sites/kshafi (accessed 21.12.13).
  • 80
    • 12244261390 scopus 로고    scopus 로고
    • Vivo' spam filtering: A challenge problem for KDD
    • T. Fawcett 'In vivo' spam filtering: a challenge problem for KDD SIGKDD Explor. Newsl. 5 2 2003 140 148
    • (2003) SIGKDD Explor. Newsl. , vol.5 , Issue.2 , pp. 140-148
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.