메뉴 건너뛰기




Volumn 2015-October, Issue , 2015, Pages 56-62

Real-time anomaly detection and localization in crowded scenes

Author keywords

Benchmark testing; Feature extraction; Gaussian distribution; Real time systems; Reliability; Streaming media; Training

Indexed keywords

COMPUTER VISION; COST EFFECTIVENESS; FEATURE EXTRACTION; GAUSSIAN DISTRIBUTION; INTERACTIVE COMPUTER SYSTEMS; MEDIA STREAMING; PERSONNEL TRAINING; REAL TIME SYSTEMS; RELIABILITY;

EID: 84951976062     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2015.7301284     Document Type: Conference Paper
Times cited : (206)

References (22)
  • 2
    • 78449304930 scopus 로고    scopus 로고
    • Abnormal events detection based on spatio-temporal co-occurrences
    • 1
    • Y. Benezeth, P.-M. Jodoin, V. Saligrama, and C. Rosenberger. Abnormal events detection based on spatio-temporal co-occurrences. In CVPR, pages 1446-1453, 2009. 1
    • (2009) CVPR , pp. 1446-1453
    • Benezeth, Y.1    Jodoin, P.-M.2    Saligrama, V.3    Rosenberger, C.4
  • 3
    • 84856093296 scopus 로고    scopus 로고
    • Multi-scale and realtime non-parametric approach for anomaly detection and localization
    • 4
    • M. Bertini, A. Del Bimbo, and L. Seidenari. Multi-scale and realtime non-parametric approach for anomaly detection and localization. Computer Vision Image Understanding, 116(3):320-329, 2012. 4
    • (2012) Computer Vision Image Understanding , vol.116 , Issue.3 , pp. 320-329
    • Bertini, M.1    Del Bimbo, A.2    Seidenari, L.3
  • 4
    • 84859013796 scopus 로고    scopus 로고
    • On the mathematical properties of the structural similarity index
    • 4
    • D. Brunet, E. R. Vrscay, and Z. Wang. On the mathematical properties of the structural similarity index. IEEE Trans. Image Processing, 21(4):1488-1499, 2012. 4
    • (2012) IEEE Trans. Image Processing , vol.21 , Issue.4 , pp. 1488-1499
    • Brunet, D.1    Vrscay, E.R.2    Wang, Z.3
  • 6
    • 80052872021 scopus 로고    scopus 로고
    • Sparse reconstruction cost for abnormal event detection
    • 1,7
    • Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction cost for abnormal event detection. In CVPR, pages 3449-3456, 2011. 1, 7
    • (2011) CVPR , pp. 3449-3456
    • Cong, Y.1    Yuan, J.2    Liu, J.3
  • 7
    • 84884545292 scopus 로고    scopus 로고
    • Video anomaly search in crowded scenes via spatio-temporal motion context
    • 1
    • Y. Cong, J. Yuan, and Y. Tang. Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Information Forensics Security, 8(10):1590-1599, 2013. 1
    • (2013) IEEE Trans. Information Forensics Security , vol.8 , Issue.10 , pp. 1590-1599
    • Cong, Y.1    Yuan, J.2    Tang, Y.3
  • 9
    • 70450169881 scopus 로고    scopus 로고
    • Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
    • 1,6
    • J. Kim and K. Grauman. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In CVPR, pages 2921-2928, 2009. 1, 6
    • (2009) CVPR , pp. 2921-2928
    • Kim, J.1    Grauman, K.2
  • 10
    • 70450214749 scopus 로고    scopus 로고
    • Crowded scenes using spatio-temporal motion pattern models
    • 1
    • L. Kratz and K. Nishino. Crowded scenes using spatio-temporal motion pattern models. In CVPR, pages 1446-1453, 2009. 1
    • (2009) CVPR , pp. 1446-1453
    • Kratz, L.1    Nishino, K.2
  • 12
    • 84898792897 scopus 로고    scopus 로고
    • Abnormal event detection at 150 fps in MATLAB
    • 1
    • C. Lu, J. Shi, and J. Jia. Abnormal event detection at 150 fps in MATLAB. In ICCV, pages 2720-2727, 2013. 1
    • (2013) ICCV , pp. 2720-2727
    • Lu, C.1    Shi, J.2    Jia, J.3
  • 13
    • 77956002209 scopus 로고    scopus 로고
    • Anomaly detection in crowded scenes
    • 1, 5, 6
    • V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos. Anomaly detection in crowded scenes. In CVPR, pages 1975-1981, 2010. 1, 5, 6
    • (2010) CVPR , pp. 1975-1981
    • Mahadevan, V.1    Li, W.2    Bhalodia, V.3    Vasconcelos, N.4
  • 14
    • 70450255364 scopus 로고    scopus 로고
    • Abnormal crowd behavior detection using social force model
    • 1, 6, 7
    • R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In CVPR, pages 935-942, 2009. 1, 6, 7
    • (2009) CVPR , pp. 935-942
    • Mehran, R.1    Oyama, A.2    Shah, M.3
  • 15
    • 84885480942 scopus 로고    scopus 로고
    • An on-line real-time learning method for detecting anomalies in videos using spatio-temporal compositions
    • 1
    • M. J. Roshtkhari and M. D. Levine. An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Computer Vision Image Understanding, 117(10):1436-1452, 2013. 1
    • (2013) Computer Vision Image Understanding , vol.117 , Issue.10 , pp. 1436-1452
    • Roshtkhari, M.J.1    Levine, M.D.2
  • 16
    • 84866703571 scopus 로고    scopus 로고
    • Video anomaly detection based on local statistical aggregates
    • 1,7
    • V. Saligrama and Z. Chen. Video anomaly detection based on local statistical aggregates. In CVPR, 2012. 1, 7
    • (2012) CVPR
    • Saligrama, V.1    Chen, Z.2
  • 18
    • 75649110542 scopus 로고    scopus 로고
    • Perception by hierarchical Bayesian models
    • 1
    • X. Wang, X. Ma, and E. Grimson. Perception by hierarchical Bayesian models. In CVPR, pages 1-8, 2007. 1
    • (2007) CVPR , pp. 1-8
    • Wang, X.1    Ma, X.2    Grimson, E.3
  • 19
    • 77956002728 scopus 로고    scopus 로고
    • Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes
    • 1, 7
    • S. Wu, B. Moore, and M. Shah. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In CVPR, 2010. 1, 7
    • (2010) CVPR
    • Wu, S.1    Moore, B.2    Shah, M.3
  • 20
    • 84904812644 scopus 로고    scopus 로고
    • Video anomaly detection based on a hierarchical activity discovery within spatiotemporal contexts
    • 5, 6
    • D. Xu, R. Song, X. Wu, N. Li, W. Feng, and H. Qian. Video anomaly detection based on a hierarchical activity discovery within spatiotemporal contexts. Neurocomputing, 143:144-152, 2014. 5, 6
    • (2014) Neurocomputing , vol.143 , pp. 144-152
    • Xu, D.1    Song, R.2    Wu, X.3    Li, N.4    Feng, W.5    Qian, H.6
  • 21
    • 84887365369 scopus 로고    scopus 로고
    • Semi-supervised learning of feature hierarchies for object detection in a video
    • 3
    • Y. Yang, G. Shu, and M. Shah. Semi-supervised learning of feature hierarchies for object detection in a video. In CVPR, pages 1650-1657, 2013. 3
    • (2013) CVPR , pp. 1650-1657
    • Yang, Y.1    Shu, G.2    Shah, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.