메뉴 건너뛰기




Volumn 52-53, Issue 1, 2015, Pages 436-446

Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

Author keywords

C4.5 algorithm; Decision tree; Kernel function; RBF; Statistical features; SVM

Indexed keywords

CONDITION MONITORING; DATA ACQUISITION; DATA MINING; DECISION TREES; FAULT DETECTION; HYDRAULIC BRAKES; HYDRAULIC MACHINERY; PATIENT MONITORING; TREES (MATHEMATICS); ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84922888685     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2014.08.007     Document Type: Article
Times cited : (201)

References (26)
  • 1
    • 85028168513 scopus 로고    scopus 로고
    • Nick Johnson, (http://www.articles3k.com/article/144/176520/brake-failure-accidents).
    • Johnson, N.1
  • 2
    • 78650687670 scopus 로고    scopus 로고
    • Effect of number of features on classification of roller bearing faults using SVM and PSVM
    • V. Sugumaran, K.I. Ramachandran, Effect of number of features on classification of roller bearing faults using SVM and PSVM, Expert Syst. Appl. 38 (2011) 4088-4096.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4088-4096
    • Sugumaran, V.1    Ramachandran, K.I.2
  • 3
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, K.R. Al-balushi, S.A. Al-araim, Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection, Eng. Appl. Artif. Intell. 16 (2003) 657-665.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araim, S.A.3
  • 6
    • 0042388195 scopus 로고
    • Fault diagnosis of dynamic systems using neural networks
    • Australia
    • T. Sorsa, Fault diagnosis of dynamic systems using neural networks, in: Proceedings of the 12th IFAC World Conference Sydney, Australia, vol. 7,1993, pp. 453-456.
    • (1993) Proceedings of the 12th IFAC World Conference Sydney , vol.7 , pp. 453-456
    • Sorsa, T.1
  • 9
    • 34047251878 scopus 로고    scopus 로고
    • Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
    • V. Sugumaran, K.I. Ramachandran, Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing, Mech. Syst. Signal Process. 21 (2007) 2237-2247.
    • (2007) Mech. Syst. Signal Process , vol.21 , pp. 2237-2247
    • Sugumaran, V.1    Ramachandran, K.I.2
  • 11
    • 81155123062 scopus 로고    scopus 로고
    • Automatic rule learning using roughset for fuzzy classifier in fault categorization of centrifugal pump
    • N.R. Sakthivel, V. Sugumaran, B.B. Nair, Automatic rule learning using roughset for fuzzy classifier in fault categorization of centrifugal pump, Int. J. Appl. Soft Comput. 12 (2012) 196-203.
    • (2012) Int. J. Appl. Soft Comput. , vol.12 , pp. 196-203
    • Sakthivel, N.R.1    Sugumaran, V.2    Nair, B.B.3
  • 12
    • 0344121584 scopus 로고    scopus 로고
    • Fault diagnosis system for rotary machine based on fuzzy neural networks
    • Z. Sheng, Fault diagnosis system for rotary machine based on fuzzy neural networks, JSME Int. J. 46 (2003) 1035-1041.
    • (2003) JSME Int. J. , vol.46 , pp. 1035-1041
    • Sheng, Z.1
  • 13
    • 33947246080 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on auto associative neural networks and wavelet transforms
    • J. Sanz, R. Perera, C. Huerta, Fault diagnosis of rotating machinery based on auto associative neural networks and wavelet transforms, J. Sound Vib. 302 (2007) 981-999.
    • (2007) J. Sound Vib. , vol.302 , pp. 981-999
    • Sanz, J.1    Perera, R.2    Huerta, C.3
  • 14
    • 0033725799 scopus 로고    scopus 로고
    • The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant
    • I.S. Koo, WW Kim, The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant, ISA Trans. 39 (2000) 309-316.
    • (2000) ISA Trans. , vol.39 , pp. 309-316
    • Koo, I.S.1    Kim, W.W.2
  • 15
    • 33845472656 scopus 로고    scopus 로고
    • Decision tree and PCA-based fault of rotating machinery
    • W. Sun, J. Chen, J. Li, Decision tree and PCA-based fault of rotating machinery, Mech. Syst. Signal Process. 21 (2007) 1300-1317.
    • (2007) Mech. Syst. Signal Process , vol.21 , pp. 1300-1317
    • Sun, W.1    Chen, J.2    Li, J.3
  • 16
    • 31044444738 scopus 로고    scopus 로고
    • Support vector machines-based fault diagnosis for turbo-pump rotor
    • F. Yuan, F.-L. Chu, Support vector machines-based fault diagnosis for turbo-pump rotor, Mech. Syst. Signal Process. 20 (2006) 939-952.
    • (2006) Mech. Syst. Signal Process , vol.20 , pp. 939-952
    • Yuan, F.1    Chu, F.-L.2
  • 17
    • 0347869909 scopus 로고    scopus 로고
    • Advanced digital vibration signal processing for condition monitoring
    • TX, USA
    • A.K. Nandi, Advanced digital vibration signal processing for condition monitoring, in: Proceedings of COMADEM, Houston, TX, USA, 2000, pp. 129-143.
    • (2000) Proceedings of COMADEM, Houston , pp. 129-143
    • Nandi, A.K.1
  • 18
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, K.I. Ramachandran, Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing, Mech. Syst. Signal Process. 21 (2006) 930-942.
    • (2006) Mech. Syst. Signal Process , vol.21 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.I.3
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burgess, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2 (1998) 955-974.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 955-974
    • Burgess, C.J.C.1
  • 20
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.W Hsu, C.J. Lin, A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Netw. 13 (2002) 415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 21
    • 85028161356 scopus 로고
    • Kluwer Academic Publishers, MA, USA
    • J.R. Quinlan, In Machine Learning Hingham, Kluwer Academic Publishers, MA, USA, 1986, 81-106 (ISSN: 0885-6125).
    • (1986) Machine Learning Hingham , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 79951578204 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) and proximal support vector machine (PSVM) for fault classification of mono-block centrifugal pump
    • N.R. Sakthivel, V. Sugumaran, B.B. Nair, Application of support vector machine (SVM) and proximal support vector machine (PSVM) for fault classification of mono-block centrifugal pump, Int. J. Data Anal. Tech. Strat. 2 (2010) 38-61.
    • (2010) Int. J. Data Anal. Tech. Strat. , vol.2 , pp. 38-61
    • Sakthivel, N.R.1    Sugumaran, V.2    Nair, B.B.3
  • 25
    • 24944444628 scopus 로고    scopus 로고
    • Application research of support vector machines in condition trend prediction of mechanical equipment
    • J.Y. Yang, YY Zhang, Application research of support vector machines in condition trend prediction of mechanical equipment, Lect. Notes Comput. Sci. 3498(2005)857-864.
    • (2005) Lect. Notes Comput. Sci. , vol.3498 , pp. 857-864
    • Yang, J.Y.1    Zhang, Y.Y.2
  • 26
    • 33846798101 scopus 로고    scopus 로고
    • Subspace-based gearbox condition monitoring by kernel principal component analysis
    • Qingbo He, Kong Fanrang, Ruqiang Yan, Subspace-based gearbox condition monitoring by kernel principal component analysis, Mech. Syst. Signal Process. 21 (2007) 1755-1772.
    • (2007) Mech. Syst. Signal Process , vol.21 , pp. 1755-1772
    • He, Q.1    Kong, F.2    Yan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.