메뉴 건너뛰기




Volumn 39, Issue 7, 2018, Pages 134-143

Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network;基于一维卷积神经网络的滚动轴承自适应故障诊断算法*

Author keywords

Adaptive feature extraction; Deep learning; Intelligent fault diagnosis; One dimensional convolutional neural network; Vibration signal

Indexed keywords

CONVOLUTION; DEEP LEARNING; EXTRACTION; FAULT DETECTION; FEATURE EXTRACTION; LEARNING ALGORITHMS; NEURAL NETWORKS; ROLLER BEARINGS;

EID: 85059507164     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: 10.19650/j.cnki.cjsi.J1803286     Document Type: Article
Times cited : (157)

References (21)
  • 1
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • JIA F, LEI Y, LIN J, et al.Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016(72-73): 303-315.
    • (2016) Mechanical Systems & Signal Processing , Issue.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3
  • 2
    • 85021292494 scopus 로고    scopus 로고
    • Feature extraction of weak vibration signal based on improved sparse coding
    • 余路, 曲建岭, 高峰, 等. 基于改进稀疏编码的微弱振动信号特征提取算法[J]. 仪器仪表学报, 2017, 38(3): 711-717.
    • 余路, 曲建岭, 高峰, 等. 基于改进稀疏编码的微弱振动信号特征提取算法[J]. 仪器仪表学报, 2017, 38(3): 711-717.YU L, QU J L, GAO F, et al.Feature extraction of weak vibration signal based on improved sparse coding[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 711-717.
    • (2017) Chinese Journal of Scientific Instrument , vol.38 , Issue.3 , pp. 711-717
    • Yu, L.1    Qu, J.L.2    Gao, F.3
  • 3
    • 84878372004 scopus 로고    scopus 로고
    • Rotor fault diagnosis based on Higer-order statistics
    • 蔡剑华, 胡惟文, 王先春. 基于高阶统计量的滚动轴承故障诊断方法[J]. 振动, 测试与诊断, 2013, 33(2): 298-301.
    • 蔡剑华, 胡惟文, 王先春. 基于高阶统计量的滚动轴承故障诊断方法[J]. 振动, 测试与诊断, 2013, 33(2): 298-301.CAI J H, HU W W, WANG X CH.Rotor fault diagnosis based on Higer-order statistics[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 298-301.
    • (2013) Journal of Vibration, Measurement & Diagnosis , vol.33 , Issue.2 , pp. 298-301
    • Cai, J.H.1    Hu, W.W.2    Wang, X.C.3
  • 4
    • 84863349134 scopus 로고    scopus 로고
    • Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery
    • HE Y, HUANG J, ZHANG B.Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery[J]. Measurement Science & Technology, 2012, 23(4): 45603-45616.
    • (2012) Measurement Science & Technology , vol.23 , Issue.4 , pp. 45603-45616
    • He, Y.1    Huang, J.2    Zhang, B.3
  • 5
    • 84928393121 scopus 로고    scopus 로고
    • Switched-curent fault diagnosis based on entropy and Haar wavelet transform
    • 龙英, 何怡刚, 张镇, 等. 基于信息熵和Haar小波变换的开关电流电路故障诊断新方法[J]. 仪器仪表学报, 2015, 36(3): 701-711.
    • 龙英, 何怡刚, 张镇, 等. 基于信息熵和Haar小波变换的开关电流电路故障诊断新方法[J]. 仪器仪表学报, 2015, 36(3): 701-711.LONG Y, HE Y G, ZHANG ZH, et al.Switched-curent fault diagnosis based on entropy and Haar wavelet transform[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 701-711.
    • (2015) Chinese Journal of Scientific Instrument , vol.36 , Issue.3 , pp. 701-711
    • Long, Y.1    He, Y.G.2    Zhang, Z.3
  • 6
    • 84961775731 scopus 로고    scopus 로고
    • Time-frequency feature extraction method based on cs-lbp for bearing signals
    • 张云强, 张培林, 吴定海, 等. 基于CSLBP的轴承信号时频特征提取方法[J]. 振动, 测试与诊断, 2016, 36(1): 22-27.
    • 张云强, 张培林, 吴定海, 等. 基于CSLBP的轴承信号时频特征提取方法[J]. 振动, 测试与诊断, 2016, 36(1): 22-27.ZHANG Y Q, ZHANG P L, WU D H, et al. Time-frequency feature extraction method based on cs-lbp for bearing signals[J]. Journal of Vibration Measurement & Diagnosis, 2016, 36(1): 22-27.
    • (2016) Journal of Vibration Measurement & Diagnosis , vol.36 , Issue.1 , pp. 22-27
    • Zhang, Y.Q.1    Zhang, P.L.2    Wu, D.H.3
  • 7
    • 84955487468 scopus 로고    scopus 로고
    • A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains
    • HU B, LI B.A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains[J]. Measurement & Technology, 2016, 27(2): 025017.
    • (2016) Measurement & Technology , vol.27 , Issue.2
    • Hu, B.1    Li, B.2
  • 8
    • 84916216664 scopus 로고    scopus 로고
    • Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform
    • HE W, ZI Y, CHEN B, et al.Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform[J]. Mechanical Systems & Signal Processing, 2015(s54-55): 457-480.
    • (2015) Mechanical Systems & Signal Processing , Issue.54-55 s , pp. 457-480
    • He, W.1    Zi, Y.2    Chen, B.3
  • 9
    • 84897838495 scopus 로고    scopus 로고
    • Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction
    • 苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3): 70-75.
    • 苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3): 70-75.SU Z Q, TANG B P, YAO J B, et al.Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J]. Journal of Vibration and Shock, 2014, 33(3): 70-75.
    • (2014) Journal of Vibration and Shock , vol.33 , Issue.3 , pp. 70-75
    • Su, Z.Q.1    Tang, B.P.2    Yao, J.B.3
  • 10
    • 79952630284 scopus 로고    scopus 로고
    • Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network
    • WANG H, CHEN P.Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network[J]. Computers & Industrial Engineering, 2011, 60(4): 511-518.
    • (2011) Computers & Industrial Engineering , vol.60 , Issue.4 , pp. 511-518
    • Wang, H.1    Chen, P.2
  • 11
    • 84942133370 scopus 로고    scopus 로고
    • Overall-improved fault diagnosis approach based on support vector machine
    • 焦卫东, 林树森. 整体改进的基于支持向量机的故障诊断方法[J]. 仪器仪表学报, 2015, 36(8): 1861-1870.
    • 焦卫东, 林树森. 整体改进的基于支持向量机的故障诊断方法[J]. 仪器仪表学报, 2015, 36(8): 1861-1870.JIAO W D, LIN SH S.Overall-improved fault diagnosis approach based on support vector machine[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1861-1870.
    • (2015) Chinese Journal of Scientific Instrument , vol.36 , Issue.8 , pp. 1861-1870
    • Jiao, W.D.1    Lin, S.S.2
  • 12
    • 85062534739 scopus 로고    scopus 로고
    • Sentiment analysis of micro-blog short text based on convolutional memory neural network
    • 郑啸, 王义真, 袁志祥, 等. 基于卷积记忆神经网络的微博短文本情感分析[J]. 电子测量与仪器学报, 2018, 32(3): 195-200.
    • 郑啸, 王义真, 袁志祥, 等. 基于卷积记忆神经网络的微博短文本情感分析[J]. 电子测量与仪器学报, 2018, 32(3): 195-200.ZHENG X, WANG Y ZH, YUAN ZH X, et al. Sentiment analysis of micro-blog short text based on convolutional memory neural network[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(3): 195-200.
    • (2018) Journal of Electronic Measurement and Instrumentation , vol.32 , Issue.3 , pp. 195-200
    • Zheng, X.1    Wang, Y.Z.2    Yuan, Z.X.3
  • 13
    • 85060102931 scopus 로고    scopus 로고
    • Depth Image Super-Resolution Reconstruction Based on Convolution Neural Network
    • 李伟, 张旭东. 基于卷积神经网络的深度图像超分辨率重建方法[J]. 电子测量与仪器学报, 2017, 31(12): 1918-1928.
    • 李伟, 张旭东. 基于卷积神经网络的深度图像超分辨率重建方法[J]. 电子测量与仪器学报, 2017, 31(12): 1918-1928.LI W, ZHANG X D. Depth Image Super-Resolution Reconstruction Based on Convolution Neural Network, Journal of Electronic Measurement and Instrumentation, 2017, 31(12): 1918-1928.
    • (2017) Journal of Electronic Measurement and Instrumentation , vol.31 , Issue.12 , pp. 1918-1928
    • Li, W.1    Zhang, X.D.2
  • 14
    • 84977260703 scopus 로고    scopus 로고
    • A gender classification model based on cross-connected convolutional neural networks
    • 张婷, 李玉鑑, 胡海鹤, 等. 基于跨连卷积神经网络的性别分类模型[J]. 自动化学报, 2016, 42(6): 858-865.
    • 张婷, 李玉鑑, 胡海鹤, 等. 基于跨连卷积神经网络的性别分类模型[J]. 自动化学报, 2016, 42(6): 858-865.ZHANG T, LI Y J, HU H H, et al.A gender classification model based on cross-connected convolutional neural networks[J]. ACTA Automatica Sinica, 2016, 42(6): 858-865.
    • (2016) ACTA Automatica Sinica , vol.42 , Issue.6 , pp. 858-865
    • Zhang, T.1    Li, Y.J.2    Hu, H.H.3
  • 15
    • 84974786985 scopus 로고    scopus 로고
    • Research on bearing condition monitoring based on deep learning
    • 郭亮, 高宏力, 张一文, 等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016, 35(12): 167-171.
    • 郭亮, 高宏力, 张一文, 等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016, 35(12): 167-171.GUO L, GAO H L, ZHANG Y W, et al.Research on bearing condition monitoring based on deep learning[J]. Journal of Vibration and Shock, 2016, 35(12): 167-171.
    • (2016) Journal of Vibration and Shock , vol.35 , Issue.12 , pp. 167-171
    • Guo, L.1    Gao, H.L.2    Zhang, Y.W.3
  • 16
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    • LU C, WANG Z Y, QIN W L, et al.Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130(C): 377-388.
    • (2017) Signal Processing , vol.130 , Issue.C , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3
  • 17
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • CHEN Z Q, LI C, SANCHEZ R. Gearbox fault identification and classification with convolutional neural networks[J]. Shock and Vibration, 2015(2): 1-10.
    • (2015) Shock and Vibration , Issue.2 , pp. 1-10
    • Chen, Z.Q.1    Li, C.2    Sanchez, R.3
  • 18
    • 85059063212 scopus 로고    scopus 로고
    • An approach to intelligent fault diagnosis of rolling bearing using wavelet time-frequency representation and CNN
    • 袁建虎, 韩涛, 唐建, 等. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017(2): 93-97.
    • 袁建虎, 韩涛, 唐建, 等. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017(2): 93-97.YUAN J H, HAN T, TANG J, et al. An approach to intelligent fault diagnosis of rolling bearing using wavelet time-frequency representation and CNN[J]. Machine Design and Research, 2017(2): 93-97.
    • (2017) Machine Design and Research , Issue.2 , pp. 93-97
    • Yuan, J.H.1    Han, T.2    Tang, J.3
  • 19
    • 85030709297 scopus 로고    scopus 로고
    • Deep learning for fault diagnosis: The state of the art and challenge
    • 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 345-358.
    • 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 345-358.REN H, QU J F, CHAI Y, et al.Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32(8): 345-358.
    • (2017) Control and Decision , vol.32 , Issue.8 , pp. 345-358
    • Ren, H.1    Qu, J.F.2    Chai, Y.3
  • 21
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • HINTON G E.Visualizing high-dimensional data using t-SNE[J]. Vigiliae Christianae, 2008, 9(2): 2579-2605.
    • (2008) Vigiliae Christianae , vol.9 , Issue.2 , pp. 2579-2605
    • Hinton, G.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.