메뉴 건너뛰기




Volumn 29, Issue 1, 2018, Pages 61-70

Text classification based on deep belief network and softmax regression

Author keywords

Deep belief networks; Feature learning; L BFGS; Restricted Boltzmann machines; Softmax model

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; MATRIX ALGEBRA; REGRESSION ANALYSIS;

EID: 84974822424     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-016-2401-x     Document Type: Article
Times cited : (237)

References (43)
  • 1
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. doi:10.1162/neco.2006.18.7.1527
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 2
    • 84876672166 scopus 로고    scopus 로고
    • Machine learning paradigms for speech recognition: an overview
    • Deng L, Li X (2013) Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 21(5):1060–1089. doi:10.1109/TASL.2013.2244083
    • (2013) IEEE Trans Audio Speech Lang Process , vol.21 , Issue.5 , pp. 1060-1089
    • Deng, L.1    Li, X.2
  • 3
    • 84055212007 scopus 로고    scopus 로고
    • Sparse multilayer perceptron for phoneme recognition
    • Sivaram G, Hermansky H (2012) Sparse multilayer perceptron for phoneme recognition. IEEE Trans Audio Speech Lang Process 20(1):23–29. doi:10.1109/TASL.2011.2129510
    • (2012) IEEE Trans Audio Speech Lang Process , vol.20 , Issue.1 , pp. 23-29
    • Sivaram, G.1    Hermansky, H.2
  • 4
    • 78049409409 scopus 로고    scopus 로고
    • Language recognition using deep-structured conditional random fields
    • Yu D, Wang S, Karam Z, Deng L (2010) Language recognition using deep-structured conditional random fields. Acoust Speech Signal Process 41(3):5030–5033. doi:10.1109/ICASSP.2010.5495072
    • (2010) Acoust Speech Signal Process , vol.41 , Issue.3 , pp. 5030-5033
    • Yu, D.1    Wang, S.2    Karam, Z.3    Deng, L.4
  • 6
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Neural Inf Process Syst 25(2):1106–1114
    • (2012) Neural Inf Process Syst , vol.25 , Issue.2 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 9
    • 79961219393 scopus 로고    scopus 로고
    • Discovering binary codes for documents by learning deep generative models
    • Hinton GE, Salakhutdinov R (2011) Discovering binary codes for documents by learning deep generative models. Top Cogn Sci 3(1):74–91. doi:10.1111/j.1756-8765.2010.01109.x1
    • (2011) Top Cogn Sci , vol.3 , Issue.1 , pp. 74-91
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 10
    • 84907236069 scopus 로고    scopus 로고
    • A research of speech emotion recognition based on deep belief network and SVM
    • Huang CC, Gong W, Fu WL, Feng DY (2014) A research of speech emotion recognition based on deep belief network and SVM. Math Probl Eng 2014(2014):1–7. doi:10.1155/2014/749604
    • (2014) Math Probl Eng , vol.2014 , Issue.5 , pp. 1-7
    • Huang, C.C.1    Gong, W.2    Fu, W.L.3    Feng, D.Y.4
  • 11
    • 84930637922 scopus 로고    scopus 로고
    • Active semi-supervised learning method with hybrid deep belief networks
    • Zhou S, Chen Q, Wang X (2014) Active semi-supervised learning method with hybrid deep belief networks. PLoS One 9(9):e107122. doi:10.1371/journal.pone.0107122
    • (2014) PLoS One , vol.9 , Issue.9
    • Zhou, S.1    Chen, Q.2    Wang, X.3
  • 12
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang YM (1999) An evaluation of statistical approaches to text categorization. Inf Retr 1(1):69–90. doi:10.1023/A:1009982220290
    • (1999) Inf Retr , vol.1 , Issue.1 , pp. 69-90
    • Yang, Y.M.1
  • 13
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47. doi:10.1145/505282.505283
    • (2002) ACM Comput Surv , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 14
    • 0041513204 scopus 로고    scopus 로고
    • Fast and accurate text classification via multiple linear discriminant projections
    • Chakrabarti S, Roy S, Soundalgekar M (2003) Fast and accurate text classification via multiple linear discriminant projections. VLDB J 12(2):170–185. doi:10.1007/s00778-003-0098-9
    • (2003) VLDB J , vol.12 , Issue.2 , pp. 170-185
    • Chakrabarti, S.1    Roy, S.2    Soundalgekar, M.3
  • 16
    • 85028203782 scopus 로고    scopus 로고
    • Incremental support vector learning for ordinal regression
    • Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416. doi:10.1109/TNNLS.2014.2342533
    • (2015) IEEE Trans Neural Netw Learn Syst , vol.26 , Issue.7 , pp. 1403-1416
    • Gu, B.1    Sheng, V.S.2    Tay, K.Y.3    Romano, W.4    Li, S.5
  • 18
    • 17644390231 scopus 로고    scopus 로고
    • An analysis of the relative hardness of reuters-21578 subsets
    • Debole F, Sebastiani F (2004) An analysis of the relative hardness of reuters-21578 subsets. J Am Soc Inf Sci Technol 56(6):584–596. doi:10.1002/asi.20147
    • (2004) J Am Soc Inf Sci Technol , vol.56 , Issue.6 , pp. 584-596
    • Debole, F.1    Sebastiani, F.2
  • 19
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • In:, Germany
    • Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: 10th european conference on machine learning, Chemnitz, Germany, pp 137–142. doi:10.1007/BFb0026683
    • (1998) 10th european conference on machine learning, Chemnitz , pp. 137-142
    • Joachims, T.1
  • 20
    • 84959421728 scopus 로고    scopus 로고
    • A robust regularization path algorithm for ν-support vector classification
    • Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796
    • (2016) IEEE Trans Neural Netw Learn Syst
    • Gu, B.1    Sheng, V.S.2
  • 21
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: a new benchmark collection for text categorization research
    • Lewis DD, Li F, Rose T, Yang Y (2004) RCV1: a new benchmark collection for text categorization research. J Mach Learn Res 5(2):361–397. doi:10.1145/122860.122861
    • (2004) J Mach Learn Res , vol.5 , Issue.2 , pp. 361-397
    • Lewis, D.D.1    Li, F.2    Rose, T.3    Yang, Y.4
  • 24
    • 84874022486 scopus 로고    scopus 로고
    • Text categorization based on regularization extreme learning machine
    • Zheng W, Qian Y, Lu H (2013) Text categorization based on regularization extreme learning machine. Neural Comput Appl 22(3–4):447–456. doi:10.1007/s00521-011-0808-y
    • (2013) Neural Comput Appl , vol.22 , Issue.3-4 , pp. 447-456
    • Zheng, W.1    Qian, Y.2    Lu, H.3
  • 25
    • 70350351568 scopus 로고    scopus 로고
    • Text categorization based on combination of modified back propagation neural network and latent semantic analysis
    • Wang W, Yu B (2009) Text categorization based on combination of modified back propagation neural network and latent semantic analysis. Neural Comput Appl 18(8):875–881. doi:10.1007/s00521-008-0193-3
    • (2009) Neural Comput Appl , vol.18 , Issue.8 , pp. 875-881
    • Wang, W.1    Yu, B.2
  • 26
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic Fuzzy Neural Networks: A Novel Approach to Function Approximation
    • Wu S, Er MJ (2000) Dynamic fuzzy neural networks: a novel approach to function approximation. IEEE Trans Syst Man Cybern 30(2):358–364. doi:10.1109/3477.836384
    • (2000) IEEE Trans Neural Networks , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 27
    • 0036565011 scopus 로고    scopus 로고
    • Face Recognition Using Radial Basis Function (RBD) Neural Networks
    • Er MJ, Wu S, Lu J, Toh HL (2002) Face recognition using radial basis function (RBD) neural networks. IEEE Trans Neural Netw 13(3):697–710. doi:10.1109/CDC.1999.831240
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.3 , pp. 697-710
    • Er, M.J.1    Wu, S.2    Lu, J.3    Toh, H.L.4
  • 28
    • 33645000428 scopus 로고    scopus 로고
    • Illumination compensation and normalisation for robust face recognition using discrete cosine transform on logarithm domain
    • Chen W, ER MJ, Wu S (2006) Illumination compensation and normalisation for robust face recognition using discrete cosine transform on logarithm domain. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Systems Man Cybern Soc 36(2):458–66. doi:10.1109/TSMCB.2005.857353
    • (2006) IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Systems Man Cybern Soc , vol.36 , Issue.2 , pp. 458-466
    • Chen, W.1    Er, M.J.2    Wu, S.3
  • 29
    • 59449087310 scopus 로고    scopus 로고
    • Exploring strategies for training deep neural networks
    • Larochelle H, Bengio Y, Louradour J et al (2009) Exploring strategies for training deep neural networks. J Mach Learn Res 10(10):1–40. doi:10.1145/1577069.1577070
    • (2009) J Mach Learn Res , vol.10 , Issue.10 , pp. 1-40
    • Larochelle, H.1    Bengio, Y.2    Louradour, J.3
  • 32
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: foundations of harmony theory
    • In: Foundations, MIT Press, Cambridge, MA
    • Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. In: Parallel distributed processing: explorations in the microstructure of cognition, vol 1. Foundations, MIT Press, Cambridge, MA, pp 194–281
    • (1986) Parallel distributed processing: explorations in the microstructure of cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 33
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton GE (2010) A practical guide to training restricted boltzmann machines. Neural Netw: Tricks Trade 9(1):599–619. doi:10.1007/978-3-642-35289-8_32
    • (2010) Neural Netw: Tricks Trade , vol.9 , Issue.1 , pp. 599-619
    • Hinton, G.E.1
  • 34
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800. doi:10.1162/089976602760128018
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 35
    • 84898070747 scopus 로고    scopus 로고
    • Application of deep belief networks for natural language understanding
    • Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for natural language understanding. IEEE/ACM Trans Audio, Speech Lang Process 22(4):778–784. doi:10.1109/TASLP.2014.2303296. DOI: 10.1109/TNN.2005.844909
    • (2014) IEEE/ACM Trans Audio, Speech Lang Process , vol.22 , Issue.4 , pp. 778-784
    • Sarikaya, R.1    Hinton, G.E.2    Deoras, A.3
  • 36
    • 34249753618 scopus 로고
    • Support-vector networks
    • Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. doi:10.1007/BF00994018
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Vapnik, V.1
  • 37
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman N (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185. doi:10.1080/00031305.1992.10475879
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.1
  • 38
    • 84908488240 scopus 로고    scopus 로고
    • IOP Stanford, Accessed 7 Apr 2013
    • Ng A, Ngiam J, et al (2013) UFLDL tutorial. IOP Stanford. http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial. Accessed 7 Apr 2013
    • (2013) UFLDL tutorial
    • Ng, A.1    Ngiam, J.2
  • 39
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Wu S, Er MJ, Gao Y (2001) A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans Fuzzy Syst 9(4):578–594. doi:10.1109/CDC.1999.831240
    • (2001) IEEE Trans on Fuzzy Systems , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 40
    • 19344375792 scopus 로고    scopus 로고
    • High-speed Face Recognition Based on Discrete Cosine Transform and RBF Neural Networks
    • Er MJ, Chen W, Wu S (2005) High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Trans Neural Netw 16(3):679–691. doi:10.1109/TNN.2005.844909
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.3 , pp. 679-691
    • Er, M.J.1    Chen, W.2    Wu, S.3
  • 41
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Schölkopf B, Burges CJ, (eds), MIT Press, Cambridge
    • Joachims T (1999) Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel methods-support vector learning, chapter 11. MIT Press, Cambridge, pp 169–184
    • (1999) Advances in Kernel methods-support vector learning, chapter 11 , pp. 169-184
    • Joachims, T.1
  • 42
    • 84928170467 scopus 로고    scopus 로고
    • Learning deep generative models
    • Salakhutdinov R (2009) Learning deep generative models. Annu Rev Stat Appl 2(1):74–91. doi:10.1146/annurev-statistics-010814-020120
    • (2009) Annu Rev Stat Appl , vol.2 , Issue.1 , pp. 74-91
    • Salakhutdinov, R.1
  • 43
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • In
    • Ranzato MA, Szummer M (2008) Semi-supervised learning of compact document representations with deep networks. In: Proceedings of the twenty-fifth international conference, pp 792–799. doi:10.1145/1390156.1390256
    • (2008) Proceedings of the twenty-fifth international conference , pp. 792-799
    • Ranzato, M.A.1    Szummer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.