메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages

Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications

Author keywords

Electronic skins; Flexible sensors; Health monitoring; Liquid state devices; Microfluidics; Tactile sensing

Indexed keywords


EID: 85060391893     PISSN: None     EISSN: 20557434     Source Type: Journal    
DOI: 10.1038/micronano.2016.43     Document Type: Review
Times cited : (412)

References (130)
  • 2
    • 84897552123 scopus 로고    scopus 로고
    • Soft microfluidic assemblies of sensors, circuits, and radios for the skin
    • Xu S, Zhang Y, Jia L et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014; 344: 70–74.
    • (2014) Science , vol.344 , pp. 70-74
    • Xu, S.1    Zhang, Y.2    Jia, L.3
  • 3
    • 84893862009 scopus 로고    scopus 로고
    • A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
    • Gong S, Schwalb W, Wang Y et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications 2014; 5: 3132.
    • (2014) Nature Communications , vol.5 , pp. 3132
    • Gong, S.1    Schwalb, W.2    Wang, Y.3
  • 6
    • 84865098986 scopus 로고    scopus 로고
    • Camouflage and display for soft machines
    • Morin SA, Shepherd RF, Kwok SW et al. Camouflage and display for soft machines. Science 2012; 337: 828–832.
    • (2012) Science , vol.337 , pp. 828-832
    • Morin, S.A.1    Shepherd, R.F.2    Kwok, S.W.3
  • 7
    • 84919754365 scopus 로고    scopus 로고
    • Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures
    • Park J, Lee Y, Hong J et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014; 8: 12020–12029.
    • (2014) ACS Nano , vol.8 , pp. 12020-12029
    • Park, J.1    Lee, Y.2    Hong, J.3
  • 8
    • 84923362347 scopus 로고    scopus 로고
    • Stretchable silicon nanoribbon electronics for skin prosthesis
    • Kim J, Lee M, Shim HJ et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications 2014; 5: 5747.
    • (2014) Nature Communications , vol.5 , pp. 5747
    • Kim, J.1    Lee, M.2    Shim, H.J.3
  • 9
    • 84885013371 scopus 로고    scopus 로고
    • Stretchable LEDs: Light-emitting electronic skin
    • Vosgueritchian M, Tok JBH, Bao Z. Stretchable LEDs: Light-emitting electronic skin. Nature Photonics 2013; 7: 769–771.
    • (2013) Nature Photonics , vol.7 , pp. 769-771
    • Vosgueritchian, M.1    Tok, J.B.H.2    Bao, Z.3
  • 10
    • 84908355406 scopus 로고    scopus 로고
    • An implantable microfluidic device for self-monitoring of intraocular pressure
    • Araci IE, Su B, Quake SR et al. An implantable microfluidic device for self-monitoring of intraocular pressure. Nature Medicine 2014; 20: 1074–1078.
    • (2014) Nature Medicine , vol.20 , pp. 1074-1078
    • Araci, I.E.1    Su, B.2    Quake, S.R.3
  • 11
    • 84881168392 scopus 로고    scopus 로고
    • An ultra-lightweight design for imperceptible plastic electronics
    • Kaltenbrunner M, Sekitani T, Reeder J et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013; 499: 458–463.
    • (2013) Nature , vol.499 , pp. 458-463
    • Kaltenbrunner, M.1    Sekitani, T.2    Reeder, J.3
  • 12
    • 77950214388 scopus 로고    scopus 로고
    • Materials and mechanics for stretchable electronics
    • Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010; 327: 1603–1607.
    • (2010) Science , vol.327 , pp. 1603-1607
    • Rogers, J.A.1    Someya, T.2    Huang, Y.3
  • 13
    • 62849115997 scopus 로고    scopus 로고
    • Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes
    • Ahn BY, Duoss EB, Motala MJ et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 2009; 323: 1590–1593.
    • (2009) Science , vol.323 , pp. 1590-1593
    • Ahn, B.Y.1    Duoss, E.B.2    Motala, M.J.3
  • 14
    • 51749096677 scopus 로고    scopus 로고
    • A rubberlike stretchable active matrix using elastic conductors
    • Sekitani T, Noguchi Y, Hata K et al. A rubberlike stretchable active matrix using elastic conductors. Science 2008; 321: 1468–1472.
    • (2008) Science , vol.321 , pp. 1468-1472
    • Sekitani, T.1    Noguchi, Y.2    Hata, K.3
  • 15
    • 84881479937 scopus 로고    scopus 로고
    • Stretchable nanoparticle conductors with self-organized conductive pathways
    • Kim Y, Zhu J, Yeom B et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013; 500: 59–63.
    • (2013) Nature , vol.500 , pp. 59-63
    • Kim, Y.1    Zhu, J.2    Yeom, B.3
  • 17
    • 84901942948 scopus 로고    scopus 로고
    • Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array
    • Choong C-L, Shim M-B, Lee B-S et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials 2014; 26: 3451–3458.
    • (2014) Advanced Materials , vol.26 , pp. 3451-3458
    • Choong, C.-L.1    Shim, M.-B.2    Lee, B.-S.3
  • 18
    • 84906569012 scopus 로고    scopus 로고
    • Natural-rubber-based flexible microfluidic device
    • Cabrera FC, de Souza JCP, Job AE et al. Natural-rubber-based flexible microfluidic device. RSC Advances 2014; 4: 35467–35475.
    • (2014) RSC Advances , vol.4 , pp. 35467-35475
    • Cabrera, F.C.1    de Souza, J.C.P.2    Job, A.E.3
  • 19
    • 84915735596 scopus 로고    scopus 로고
    • Microflotronics: A flexible, transparent, pressure-sensitive microfluidic film
    • Li R, Nie B, Digiglio P et al. Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Advanced Functional Materials 2014; 24: 6195–6203.
    • (2014) Advanced Functional Materials , vol.24 , pp. 6195-6203
    • Li, R.1    Nie, B.2    Digiglio, P.3
  • 20
    • 77952616543 scopus 로고    scopus 로고
    • Lab-on-a-Foil: Microfluidics on thin and flexible films
    • Focke M, Kosse D, Muller C et al. Lab-on-a-Foil: Microfluidics on thin and flexible films. Lab on a Chip 2010; 10: 1365–1386.
    • (2010) Lab on a Chip , vol.10 , pp. 1365-1386
    • Focke, M.1    Kosse, D.2    Muller, C.3
  • 21
    • 84916613492 scopus 로고    scopus 로고
    • Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
    • Pradel KC, Wu W, Ding Y et al. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Letters 2014; 14: 6897–6905.
    • (2014) Nano Letters , vol.14 , pp. 6897-6905
    • Pradel, K.C.1    Wu, W.2    Ding, Y.3
  • 22
    • 54549095063 scopus 로고    scopus 로고
    • Flexible piezotronic strain sensor
    • Zhou J, Gu Y, Fei P et al. Flexible piezotronic strain sensor. Nano Letters 2008; 8: 3035–3040.
    • (2008) Nano Letters , vol.8 , pp. 3035-3040
    • Zhou, J.1    Gu, Y.2    Fei, P.3
  • 23
    • 79957703248 scopus 로고    scopus 로고
    • Origin of piezoelectricity in an electrospun poly (Vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor
    • Mandal D, Yoon S, Kim KJ. Origin of piezoelectricity in an electrospun poly (vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromolecular Rapid Communications 2011; 32:831–837.
    • (2011) Macromolecular Rapid Communications , vol.32 , pp. 831-837
    • Mandal, D.1    Yoon, S.2    Kim, K.J.3
  • 24
    • 84871545967 scopus 로고    scopus 로고
    • Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies
    • Gao Q, Meguro H, Okamoto S et al. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 2012; 28: 17593–17596.
    • (2012) Langmuir , vol.28 , pp. 17593-17596
    • Gao, Q.1    Meguro, H.2    Okamoto, S.3
  • 25
    • 84890429754 scopus 로고    scopus 로고
    • Materials and optimized designs for human-machine interfaces via epidermal electronics
    • Jeong J-W, Yeo W-H, Akhtar A et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Advanced Materials 2013; 25: 6839–6846.
    • (2013) Advanced Materials , vol.25 , pp. 6839-6846
    • Jeong, J.-W.1    Yeo, W.-H.2    Akhtar, A.3
  • 26
    • 84887014365 scopus 로고    scopus 로고
    • Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
    • Yang Y, Zhang H, Lin Z-H et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013; 7: 9213–9222.
    • (2013) ACS Nano , vol.7 , pp. 9213-9222
    • Yang, Y.1    Zhang, H.2    Lin, Z.-H.3
  • 27
    • 55349137340 scopus 로고    scopus 로고
    • Rubber-based strain sensor fabricated using photolithography for intelligent tires
    • Matsuzaki R, Keating T, Todoroki A et al. Rubber-based strain sensor fabricated using photolithography for intelligent tires. Sensors and Actuators A: Physical 2008; 148: 1–9.
    • (2008) Sensors and Actuators A: Physical , vol.148 , pp. 1-9
    • Matsuzaki, R.1    Keating, T.2    Todoroki, A.3
  • 28
    • 77957125682 scopus 로고    scopus 로고
    • Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
    • Mannsfeld SCB, Tee BCK, Stoltenberg RM et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials 2010; 9: 859–864.
    • (2010) Nature Materials , vol.9 , pp. 859-864
    • Mannsfeld, S.C.B.1    Tee, B.C.K.2    Stoltenberg, R.M.3
  • 29
    • 83555165175 scopus 로고    scopus 로고
    • Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
    • Lipomi DJ, Vosgueritchian M, Tee BCK et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 2011; 6: 788–792.
    • (2011) Nature Nanotechnology , vol.6 , pp. 788-792
    • Lipomi, D.J.1    Vosgueritchian, M.2    Tee, B.C.K.3
  • 30
    • 84859707215 scopus 로고    scopus 로고
    • A highly elastic, capacitive strain gauge based on percolating nanotube networks
    • Cohen DJ, Mitra D, Peterson K et al. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Letters 2012; 12: 1821–1825.
    • (2012) Nano Letters , vol.12 , pp. 1821-1825
    • Cohen, D.J.1    Mitra, D.2    Peterson, K.3
  • 31
    • 79955848609 scopus 로고    scopus 로고
    • A stretchable carbon nanotube strain sensor for human-motion detection
    • Yamada T, Hayamizu Y, Yamamoto Y et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology 2011; 6: 296–301.
    • (2011) Nature Nanotechnology , vol.6 , pp. 296-301
    • Yamada, T.1    Hayamizu, Y.2    Yamamoto, Y.3
  • 32
    • 84866411818 scopus 로고    scopus 로고
    • A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
    • Pang C, Lee G-Y, Kim T-i et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials 2012; 11: 795–801.
    • (2012) Nature Materials , vol.11 , pp. 795-801
    • Pang, C.1    Lee, G.-Y.2    Kim, T.-I.3
  • 33
    • 84955292043 scopus 로고    scopus 로고
    • An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film
    • Pan L, Chortos A, Yu G et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications 2014; 5: 3002.
    • (2014) Nature Communications , vol.5 , pp. 3002
    • Pan, L.1    Chortos, A.2    Yu, G.3
  • 34
    • 84934929323 scopus 로고    scopus 로고
    • Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
    • Roh E, Hwang B-U, Kim D et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015; 9: 6252–6261.
    • (2015) ACS Nano , vol.9 , pp. 6252-6261
    • Roh, E.1    Hwang, B.-U.2    Kim, D.3
  • 35
    • 84937030756 scopus 로고    scopus 로고
    • Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli
    • Kim SY, Park S, Park HW et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Advanced Materials 2015; 27: 4178–4185.
    • (2015) Advanced Materials , vol.27 , pp. 4178-4185
    • Kim, S.Y.1    Park, S.2    Park, H.W.3
  • 36
    • 77957132246 scopus 로고    scopus 로고
    • Nanowire active-matrix circuitry for low-voltage macroscale artificial skin
    • Takei K, Takahashi T, Ho JC et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials 2010; 9: 821–826.
    • (2010) Nature Materials , vol.9 , pp. 821-826
    • Takei, K.1    Takahashi, T.2    Ho, J.C.3
  • 37
    • 84922821087 scopus 로고    scopus 로고
    • A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires
    • Wang J, Jiu J, Nogi M et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 2015; 7: 2926–2932.
    • (2015) Nanoscale , vol.7 , pp. 2926-2932
    • Wang, J.1    Jiu, J.2    Nogi, M.3
  • 38
    • 33744975724 scopus 로고    scopus 로고
    • High-resolution thin-film device to sense texture by touch
    • Maheshwari V, Saraf RF. High-resolution thin-film device to sense texture by touch. Science 2006; 312: 1501–1504.
    • (2006) Science , vol.312 , pp. 1501-1504
    • Maheshwari, V.1    Saraf, R.F.2
  • 39
    • 84879511612 scopus 로고    scopus 로고
    • Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin
    • Segev-Bar M, Landman A, Nir-Shapira M et al. Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin. ACS Applied Materials & Interfaces 2013; 5: 5531–5541.
    • (2013) ACS Applied Materials & Interfaces , vol.5 , pp. 5531-5541
    • Segev-Bar, M.1    Landman, A.2    Nir-Shapira, M.3
  • 40
    • 84907513459 scopus 로고    scopus 로고
    • A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
    • Lee J, Kim S, Lee J et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014; 6: 11932–11939.
    • (2014) Nanoscale , vol.6 , pp. 11932-11939
    • Lee, J.1    Kim, S.2    Lee, J.3
  • 41
    • 79955420107 scopus 로고    scopus 로고
    • Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems
    • Wu C-Y, Liao W-H, Tung Y-C. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip 2011; 11: 1740–1746.
    • (2011) Lab on a Chip , vol.11 , pp. 1740-1746
    • Wu, C.-Y.1    Liao, W.-H.2    Tung, Y.-C.3
  • 42
    • 84882407315 scopus 로고    scopus 로고
    • A soft strain sensor based on ionic and metal liquids
    • Chossat JB, Yong-Lae P, Wood RJ et al. A soft strain sensor based on ionic and metal liquids. IEEE Sensors Journal 2013; 13: 3405–3414.
    • (2013) IEEE Sensors Journal , vol.13 , pp. 3405-3414
    • Chossat, J.B.1    Yong-Lae, P.2    Wood, R.J.3
  • 43
    • 84930652091 scopus 로고    scopus 로고
    • Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel
    • Jung T, Yang S. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 2015; 15: 11823.
    • (2015) Sensors , vol.15
    • Jung, T.1    Yang, S.2
  • 44
    • 80051607518 scopus 로고    scopus 로고
    • Epidermal electronics
    • Kim D-H, Lu N, Ma R et al. Epidermal electronics. Science 2011; 333: 838–843.
    • (2011) Science , vol.333 , pp. 838-843
    • Kim, D.-H.1    Lu, N.2    Ma, R.3
  • 45
    • 84858680812 scopus 로고    scopus 로고
    • Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications
    • Sokolov AN, Tee BCK, Bettinger CJ et al. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Accounts of Chemical Research 2012; 45: 361–371.
    • (2012) Accounts of Chemical Research , vol.45 , pp. 361-371
    • Sokolov, A.N.1    Tee, B.C.K.2    Bettinger, C.J.3
  • 46
    • 84919742989 scopus 로고    scopus 로고
    • Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin
    • Harada S, Kanao K, Yamamoto Y et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014; 8: 12851–12857.
    • (2014) ACS Nano , vol.8 , pp. 12851-12857
    • Harada, S.1    Kanao, K.2    Yamamoto, Y.3
  • 47
    • 84932194573 scopus 로고    scopus 로고
    • Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics
    • Dagdeviren C, Shi Y, Joe P et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nature Materials 2015; 14: 728–736.
    • (2015) Nature Materials , vol.14 , pp. 728-736
    • Dagdeviren, C.1    Shi, Y.2    Joe, P.3
  • 48
    • 84934967463 scopus 로고    scopus 로고
    • Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy
    • Choi S, Park J, Hyun W et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015; 9: 6626–6633.
    • (2015) ACS Nano , vol.9 , pp. 6626-6633
    • Choi, S.1    Park, J.2    Hyun, W.3
  • 49
    • 84923337917 scopus 로고    scopus 로고
    • Electronic dura mater for long-term multimodal neural interfaces
    • Minev IR, Musienko P, Hirsch A et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015; 347: 159–163.
    • (2015) Science , vol.347 , pp. 159-163
    • Minev, I.R.1    Musienko, P.2    Hirsch, A.3
  • 50
    • 84942292088 scopus 로고    scopus 로고
    • Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots
    • Di J, Yao S, Ye Y et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 2015; 9: 9407–9415.
    • (2015) ACS Nano , vol.9 , pp. 9407-9415
    • Di, J.1    Yao, S.2    Ye, Y.3
  • 51
    • 7544245225 scopus 로고    scopus 로고
    • Yield strain behavior of poly(Ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence
    • Lim JY, Kim SY. Yield strain behavior of poly(ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence. Polymer Journal 2004; 36: 769–773.
    • (2004) Polymer Journal , vol.36 , pp. 769-773
    • Lim, J.Y.1    Kim, S.Y.2
  • 52
    • 79954440671 scopus 로고    scopus 로고
    • Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates
    • Waller JH, Lalande L, Leterrier Y et al. Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates. Thin Solid Films 2011; 519: 4249–4255.
    • (2011) Thin Solid Films , vol.519 , pp. 4249-4255
    • Waller, J.H.1    Lalande, L.2    Leterrier, Y.3
  • 53
    • 84927583144 scopus 로고    scopus 로고
    • Technologies for printing sensors and electronics over large flexible substrates: A review
    • Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors Journal 2015; 15: 3164–3185.
    • (2015) IEEE Sensors Journal , vol.15 , pp. 3164-3185
    • Khan, S.1    Lorenzelli, L.2    Dahiya, R.S.3
  • 54
    • 35748982158 scopus 로고    scopus 로고
    • Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model
    • Widdle RD Jr, Bajaj AK, Davies P. Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model. International Journal of Engineering Science 2008; 46: 31–49.
    • (2008) International Journal of Engineering Science , vol.46 , pp. 31-49
    • Widdle, R.D.J.1    Bajaj, A.K.2    Davies, P.3
  • 55
    • 84890083325 scopus 로고    scopus 로고
    • Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties
    • Mi H-Y, Li Z, Turng L-S et al. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties. Materials & Design 2014; 56: 398–404.
    • (2014) Materials & Design , vol.56 , pp. 398-404
    • Mi, H.-Y.1    Li, Z.2    Turng, L.-S.3
  • 56
    • 84935031081 scopus 로고    scopus 로고
    • Soft core/shell packages for stretchable electronics
    • Lee CH, Ma Y, Jang K-I et al. Soft core/shell packages for stretchable electronics. Advanced Functional Materials 2015; 25: 3698–3704.
    • (2015) Advanced Functional Materials , vol.25 , pp. 3698-3704
    • Lee, C.H.1    Ma, Y.2    Jang, K.-I.3
  • 57
    • 84907331623 scopus 로고    scopus 로고
    • Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring
    • Jang K-I, Han SY, Xu S et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nature Communications 2014; 5: 4779.
    • (2014) Nature Communications , vol.5 , pp. 4779
    • Jang, K.-I.1    Han, S.Y.2    Xu, S.3
  • 58
    • 84925067717 scopus 로고    scopus 로고
    • Soft network composite materials with deterministic and bio-inspired designs
    • Jang K-I, Chung HU, Xu S et al. Soft network composite materials with deterministic and bio-inspired designs. Nature Communications 2015; 6: 6566.
    • (2015) Nature Communications , vol.6 , pp. 6566
    • Jang, K.-I.1    Chung, H.U.2    Xu, S.3
  • 59
    • 84857788014 scopus 로고    scopus 로고
    • Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye
    • Ha D, de Vries W, John SM et al. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed Microdevices 2012; 14: 207–215.
    • (2012) Biomed Microdevices , vol.14 , pp. 207-215
    • Ha, D.1    de Vries, W.2    John, S.M.3
  • 60
    • 84908520780 scopus 로고    scopus 로고
    • Chronically implanted pressure sensors: Challenges and state of the field
    • Yu L, Kim B, Meng E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014; 14: 20620.
    • (2014) Sensors , vol.14
    • Yu, L.1    Kim, B.2    Meng, E.3
  • 61
    • 84892908714 scopus 로고    scopus 로고
    • Spray-layer-by-layer carbon nano-tube/electrospun fiber electrodes for flexible chemiresistive sensor applications
    • Saetia K, Schnorr JM, Mannarino MM et al. Spray-layer-by-layer carbon nano-tube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Advanced Functional Materials 2014; 24: 492–502.
    • (2014) Advanced Functional Materials , vol.24 , pp. 492-502
    • Saetia, K.1    Schnorr, J.M.2    Mannarino, M.M.3
  • 62
    • 84907222535 scopus 로고    scopus 로고
    • Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes
    • Janczak D, Słoma M, Wróblewski G et al. Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes. Sensors 2014; 14: 17304.
    • (2014) Sensors , vol.14
    • Janczak, D.1    Słoma, M.2    Wróblewski, G.3
  • 63
    • 84923355308 scopus 로고    scopus 로고
    • Emerging carbon and post-carbon nanomaterial inks for printed electronics
    • Secor EB, Hersam MC. Emerging carbon and post-carbon nanomaterial inks for printed electronics. The Journal of Physical Chemistry Letters 2015; 6: 620–626.
    • (2015) The Journal of Physical Chemistry Letters , vol.6 , pp. 620-626
    • Secor, E.B.1    Hersam, M.C.2
  • 64
    • 84979964602 scopus 로고    scopus 로고
    • Conductive screen printing inks by gelation of graphene dispersions
    • Arapov K, Rubingh E, Abbel R et al. Conductive screen printing inks by gelation of graphene dispersions. Advanced Functional Materials 2015; 26: 586–593.
    • (2015) Advanced Functional Materials , vol.26 , pp. 586-593
    • Arapov, K.1    Rubingh, E.2    Abbel, R.3
  • 65
    • 84944916742 scopus 로고    scopus 로고
    • Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors
    • Wang S, Liu N, Yang C et al. Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Advances 2015; 5: 85799–85805.
    • (2015) RSC Advances , vol.5 , pp. 85799-85805
    • Wang, S.1    Liu, N.2    Yang, C.3
  • 66
    • 84895420705 scopus 로고    scopus 로고
    • A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors
    • Zhang J, Kruss S, Hilmer AJ et al. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors. Advanced Healthcare Materials 2014; 3: 412–423.
    • (2014) Advanced Healthcare Materials , vol.3 , pp. 412-423
    • Zhang, J.1    Kruss, S.2    Hilmer, A.J.3
  • 67
    • 84875458676 scopus 로고    scopus 로고
    • High performance flexible sensor based on inorganic nanomaterials
    • Hu B, Chen W, Zhou J. High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical 2013; 176: 522–533.
    • (2013) Sensors and Actuators B: Chemical , vol.176 , pp. 522-533
    • Hu, B.1    Chen, W.2    Zhou, J.3
  • 68
    • 84893085789 scopus 로고    scopus 로고
    • Single-walled carbon nanotube–poly(Por-phyrin) hybrid for volatile organic compounds detection
    • Sarkar T, Srinives S, Sarkar S et al. Single-walled carbon nanotube–poly(por-phyrin) hybrid for volatile organic compounds detection. The Journal of Physical Chemistry C 2014; 118: 1602–1610.
    • (2014) The Journal of Physical Chemistry C , vol.118 , pp. 1602-1610
    • Sarkar, T.1    Srinives, S.2    Sarkar, S.3
  • 70
    • 84934900548 scopus 로고    scopus 로고
    • Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion
    • Ryu S, Lee P, Chou JB et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015; 9: 5929–5936.
    • (2015) ACS Nano , vol.9 , pp. 5929-5936
    • Ryu, S.1    Lee, P.2    Chou, J.B.3
  • 71
    • 85027949435 scopus 로고    scopus 로고
    • Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes
    • Yeom C, Chen K, Kiriya D et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Advanced Materials 2015; 27: 1561–1566.
    • (2015) Advanced Materials , vol.27 , pp. 1561-1566
    • Yeom, C.1    Chen, K.2    Kiriya, D.3
  • 73
    • 84908637433 scopus 로고    scopus 로고
    • Highly sensitive reduced graphene oxide microelectrode array sensor
    • Ng AMH, Kenry, Teck Lim C et al. Highly sensitive reduced graphene oxide microelectrode array sensor. Biosensors and Bioelectronics 2015; 65: 265–273.
    • (2015) Biosensors and Bioelectronics , vol.65 , pp. 265-273
    • Ng, A.M.H.1    Kenry, T.L.C.2
  • 74
    • 84891369385 scopus 로고    scopus 로고
    • Ultrafast graphene oxide humidity sensors
    • Borini S, White R, Wei D et al. Ultrafast graphene oxide humidity sensors. ACS Nano 2013; 7: 11166–11173.
    • (2013) ACS Nano , vol.7
    • Borini, S.1    White, R.2    Wei, D.3
  • 75
    • 84890814830 scopus 로고    scopus 로고
    • Biocompatible and flexible graphene oxide/ upconversion nanoparticle hybrid film for optical pH sensing
    • Yan L, Chang Y-N, Yin W et al. Biocompatible and flexible graphene oxide/ upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics 2014; 16: 1576–1582.
    • (2014) Physical Chemistry Chemical Physics , vol.16 , pp. 1576-1582
    • Yan, L.1    Chang, Y.-N.2    Yin, W.3
  • 76
    • 84867443349 scopus 로고    scopus 로고
    • Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose
    • Park SJ, Kwon OS, Lee SH et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Letters 2012; 12: 5082–5090.
    • (2012) Nano Letters , vol.12 , pp. 5082-5090
    • Park, S.J.1    Kwon, O.S.2    Lee, S.H.3
  • 77
    • 84903952295 scopus 로고    scopus 로고
    • Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection
    • Kulkarni GS, Reddy K, Zhong Z et al. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nature Communications 2014; 5: 4376.
    • (2014) Nature Communications , vol.5 , pp. 4376
    • Kulkarni, G.S.1    Reddy, K.2    Zhong, Z.3
  • 78
    • 84870792038 scopus 로고    scopus 로고
    • Flexible graphene bio-nanosensor for lactate
    • Labroo P, Cui Y. Flexible graphene bio-nanosensor for lactate. Biosensors and Bioelectronics 2013; 41: 852–856.
    • (2013) Biosensors and Bioelectronics , vol.41 , pp. 852-856
    • Labroo, P.1    Cui, Y.2
  • 79
    • 84861735487 scopus 로고    scopus 로고
    • Flexible glucose sensor using CVD-grown graphene-based field effect transistor
    • Kwak YH, Choi DS, Kim YN et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors and Bioelectronics 2012; 37: 82–87.
    • (2012) Biosensors and Bioelectronics , vol.37 , pp. 82-87
    • Kwak, Y.H.1    Choi, D.S.2    Kim, Y.N.3
  • 80
    • 84863229334 scopus 로고    scopus 로고
    • Biological and chemical sensors based on graphene materials
    • Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews 2012; 41: 2283–2307.
    • (2012) Chemical Society Reviews , vol.41 , pp. 2283-2307
    • Liu, Y.1    Dong, X.2    Chen, P.3
  • 81
    • 84868109917 scopus 로고    scopus 로고
    • Graphene-based transparent strain sensor
    • Bae S-H, Lee Y, Sharma BK et al. Graphene-based transparent strain sensor. Carbon 2013; 51: 236–242.
    • (2013) Carbon , vol.51 , pp. 236-242
    • Bae, S.-H.1    Lee, Y.2    Sharma, B.K.3
  • 82
    • 84890829755 scopus 로고    scopus 로고
    • Scalable fabrication of high-performance and flexible graphene strain sensors
    • Tian H, Shu Y, Cui Y-L et al. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014; 6: 699–705.
    • (2014) Nanoscale , vol.6 , pp. 699-705
    • Tian, H.1    Shu, Y.2    Cui, Y.-L.3
  • 83
    • 84923330898 scopus 로고    scopus 로고
    • Transparent and flexible cellulose nanocrystal/ reduced graphene oxide film for proximity sensing
    • Sadasivuni KK, Kafy A, Zhai L et al. Transparent and flexible cellulose nanocrystal/ reduced graphene oxide film for proximity sensing. Small 2015; 11: 994–1002.
    • (2015) Small , vol.11 , pp. 994-1002
    • Sadasivuni, K.K.1    Kafy, A.2    Zhai, L.3
  • 85
    • 84936970614 scopus 로고    scopus 로고
    • Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns
    • Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Advances 2015; 5: 57686–57691.
    • (2015) RSC Advances , vol.5 , pp. 57686-57691
    • Wang, L.1    Liu, J.2
  • 86
    • 0024715196 scopus 로고
    • Determination of poisson's ratio for polyimide films
    • Bauer CL, Farris RJ. Determination of poisson's ratio for polyimide films. Polymer Engineering & Science 1989; 29: 1107–1110.
    • (1989) Polymer Engineering & Science , vol.29 , pp. 1107-1110
    • Bauer, C.L.1    Farris, R.J.2
  • 87
    • 78650756195 scopus 로고    scopus 로고
    • Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres
    • Lechat C, Bunsell AR, Davies P. Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. Journal of Materials Science 2011; 46: 528–533.
    • (2011) Journal of Materials Science , vol.46 , pp. 528-533
    • Lechat, C.1    Bunsell, A.R.2    Davies, P.3
  • 88
    • 84920198454 scopus 로고    scopus 로고
    • An imperceptible plastic electronic wrap
    • Drack M, Graz I, Sekitani T et al. An imperceptible plastic electronic wrap. Advanced Materials 2015; 27: 34–40.
    • (2015) Advanced Materials , vol.27 , pp. 34-40
    • Drack, M.1    Graz, I.2    Sekitani, T.3
  • 89
    • 84907947600 scopus 로고    scopus 로고
    • Embedded 3D printing of strain sensors within highly stretchable elastomers
    • Muth JT, Vogt DM, Truby RL et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials 2014; 26: 6307–6312.
    • (2014) Advanced Materials , vol.26 , pp. 6307-6312
    • Muth, J.T.1    Vogt, D.M.2    Truby, R.L.3
  • 90
    • 85027932104 scopus 로고    scopus 로고
    • Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics
    • Melzer M, Karnaushenko D, Lin G et al. Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Advanced Materials 2015; 27: 1333–1338.
    • (2015) Advanced Materials , vol.27 , pp. 1333-1338
    • Melzer, M.1    Karnaushenko, D.2    Lin, G.3
  • 91
    • 85058335209 scopus 로고    scopus 로고
    • Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics
    • Lee S, Shin S, Lee S et al. Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials 2015; 25: 3105–3105.
    • (2015) Advanced Functional Materials , vol.25 , pp. 3105
    • Lee, S.1    Shin, S.2    Lee, S.3
  • 92
    • 79953883485 scopus 로고    scopus 로고
    • Microstructured silicone substrate for printable and stretchable metallic films
    • Robinson AP, Minev I, Graz IM et al. Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 2011; 27: 4279–4284.
    • (2011) Langmuir , vol.27 , pp. 4279-4284
    • Robinson, A.P.1    Minev, I.2    Graz, I.M.3
  • 93
    • 84943194466 scopus 로고    scopus 로고
    • Fractal design concepts for stretchable electronics
    • Fan JA, Yeo W-H, Su Y et al. Fractal design concepts for stretchable electronics. Nature Communications 2014; 5: 3266.
    • (2014) Nature Communications , vol.5 , pp. 3266
    • Fan, J.A.1    Yeo, W.-H.2    Su, Y.3
  • 95
    • 84937146113 scopus 로고    scopus 로고
    • Cloth-based power shirt for wearable energy harvesting and clothes ornamentation
    • Li S, Zhong Q, Zhong J et al. Cloth-based power shirt for wearable energy harvesting and clothes ornamentation. ACS Applied Materials & Interfaces 2015; 7: 14912–14916.
    • (2015) ACS Applied Materials & Interfaces , vol.7 , pp. 14912-14916
    • Li, S.1    Zhong, Q.2    Zhong, J.3
  • 98
    • 84901649634 scopus 로고    scopus 로고
    • Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
    • Amjadi M, Pichitpajongkit A, Lee S et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014; 8: 5154–5163.
    • (2014) ACS Nano , vol.8 , pp. 5154-5163
    • Amjadi, M.1    Pichitpajongkit, A.2    Lee, S.3
  • 99
    • 84919937169 scopus 로고    scopus 로고
    • Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites
    • Boland CS, Khan U, Backes C et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 2014; 8: 8819–8830.
    • (2014) ACS Nano , vol.8 , pp. 8819-8830
    • Boland, C.S.1    Khan, U.2    Backes, C.3
  • 100
    • 84905644863 scopus 로고    scopus 로고
    • Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors
    • Kong J-H, Jang N-S, Kim S-H et al. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014; 77: 199–207.
    • (2014) Carbon , vol.77 , pp. 199-207
    • Kong, J.-H.1    Jang, N.-S.2    Kim, S.-H.3
  • 101
    • 84934933338 scopus 로고    scopus 로고
    • Breathable and stretchable temperature sensors inspired by skin
    • Chen Y, Lu B, Chen Y et al. Breathable and stretchable temperature sensors inspired by skin. Scientific Reports 2015; 5: 11505.
    • (2015) Scientific Reports , vol.5
    • Chen, Y.1    Lu, B.2    Chen, Y.3
  • 102
    • 84923194944 scopus 로고    scopus 로고
    • Highly deformable liquid-state heterojunction sensors
    • Ota H, Chen K, Lin Y et al. Highly deformable liquid-state heterojunction sensors. Nature Communications 2014; 5: 5032.
    • (2014) Nature Communications , vol.5 , pp. 5032
    • Ota, H.1    Chen, K.2    Lin, Y.3
  • 103
    • 84953455650 scopus 로고    scopus 로고
    • Microfluidics for research and applications in oncology
    • Chaudhuri PK, Ebrahimi Warkiani M, Jing T et al. Microfluidics for research and applications in oncology. Analyst 2016; 141: 504–524.
    • (2016) Analyst , vol.141 , pp. 504-524
    • Chaudhuri, P.K.1    Ebrahimi Warkiani, M.2    Jing, T.3
  • 104
    • 42549111682 scopus 로고    scopus 로고
    • Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
    • Dickey MD, Chiechi RC, Larsen RJ et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials 2008; 18: 1097–1104.
    • (2008) Advanced Functional Materials , vol.18 , pp. 1097-1104
    • Dickey, M.D.1    Chiechi, R.C.2    Larsen, R.J.3
  • 105
    • 84894277936 scopus 로고    scopus 로고
    • Iontronic microdroplet array for flexible ultrasensitive tactile sensing
    • Nie B, Li R, Brandt JD et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab on a Chip 2014; 14: 1107–1116.
    • (2014) Lab on a Chip , vol.14 , pp. 1107-1116
    • Nie, B.1    Li, R.2    Brandt, J.D.3
  • 106
    • 84908046842 scopus 로고    scopus 로고
    • Microfluidic tactile sensors for three-dimensional contact force measurements
    • Nie B, Li R, Brandt JD et al. Microfluidic tactile sensors for three-dimensional contact force measurements. Lab on a Chip 2014; 14: 4344–4353.
    • (2014) Lab on a Chip , vol.14 , pp. 4344-4353
    • Nie, B.1    Li, R.2    Brandt, J.D.3
  • 107
    • 84961675331 scopus 로고    scopus 로고
    • Highly flexible graphene oxide nanosus-pension liquid-based microfluidic tactile sensor
    • Kenry Yeo JC, Yu J, Shang M et al. Highly flexible graphene oxide nanosus-pension liquid-based microfluidic tactile sensor. Small 2016; 12: 1593–1604.
    • (2016) Small , vol.12 , pp. 1593-1604
    • Kenry Yeo, J.C.1    Yu, J.2    Shang, M.3
  • 108
    • 84923305433 scopus 로고    scopus 로고
    • Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation
    • Lee WC, Lim CH, Kenry Su C et al. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 2015; 11: 963–969.
    • (2015) Small , vol.11 , pp. 963-969
    • Lee, W.C.1    Lim, C.H.2    Kenry Su, C.3
  • 109
    • 84961963922 scopus 로고    scopus 로고
    • Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications
    • Kenry, Loh KP, Lim CT. Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications. Small 2015; 11: 5105–5117.
    • (2015) Small , vol.11 , pp. 5105-5117
    • Kenry, L.K.P.1    Lim, C.T.2
  • 110
    • 78449293089 scopus 로고    scopus 로고
    • Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films
    • Chang H, Sun Z, Yuan Q et al. Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Advanced Materials 2010; 22: 4872–4876.
    • (2010) Advanced Materials , vol.22 , pp. 4872-4876
    • Chang, H.1    Sun, Z.2    Yuan, Q.3
  • 111
    • 84904167696 scopus 로고    scopus 로고
    • Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control
    • Seo H, Ahn S, Kim J et al. Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control. Scientific Reports 2014; 4: 5642.
    • (2014) Scientific Reports , vol.4 , pp. 5642
    • Seo, H.1    Ahn, S.2    Kim, J.3
  • 112
    • 36749039718 scopus 로고    scopus 로고
    • Electronic transport properties of individual chemically reduced graphene oxide sheets
    • Gómez-Navarro C, Weitz RT, Bittner AM et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters 2007; 7: 3499–3503.
    • (2007) Nano Letters , vol.7 , pp. 3499-3503
    • Gómez-Navarro, C.1    Weitz, R.T.2    Bittner, A.M.3
  • 113
    • 79955844716 scopus 로고    scopus 로고
    • Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites
    • Gudarzi MM, Sharif F. Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites. Soft Matter 2011; 7: 3432–3440.
    • (2011) Soft Matter , vol.7 , pp. 3432-3440
    • Gudarzi, M.M.1    Sharif, F.2
  • 116
    • 84977134311 scopus 로고    scopus 로고
    • Restoring natural sensory feedback in real-time bidirectional hand prostheses
    • Raspopovic S, Capogrosso M, Petrini FM et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine 2014; 6: 222ra219–222ra219.
    • (2014) Science Translational Medicine , vol.6 , pp. 222ra219-222ra219
    • Raspopovic, S.1    Capogrosso, M.2    Petrini, F.M.3
  • 119
    • 33749153845 scopus 로고    scopus 로고
    • Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial
    • Mayer JM, Mooney V, Matheson LN et al. Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation 2006; 87: 1310–1317.
    • (2006) Archives of Physical Medicine and Rehabilitation , vol.87 , pp. 1310-1317
    • Mayer, J.M.1    Mooney, V.2    Matheson, L.N.3
  • 120
    • 84889010832 scopus 로고    scopus 로고
    • Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates
    • James CB, Naveen R, Kaivon P et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering 2013; 10: 066014.
    • (2013) Journal of Neural Engineering , vol.10
    • James, C.B.1    Naveen, R.2    Kaivon, P.3
  • 121
    • 84896713546 scopus 로고    scopus 로고
    • The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system
    • Moshayedi P, Ng G, Kwok JCF et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 2014; 35: 3919–3925.
    • (2014) Biomaterials , vol.35 , pp. 3919-3925
    • Moshayedi, P.1    Ng, G.2    Kwok, J.C.F.3
  • 122
    • 84904538841 scopus 로고    scopus 로고
    • Stimuli-responsive materials for controlled release of theranostic agents
    • Wang Y, Shim MS, Levinson NS et al. Stimuli-responsive materials for controlled release of theranostic agents. Advanced Functional Materials 2014; 24: 4206–4220.
    • (2014) Advanced Functional Materials , vol.24 , pp. 4206-4220
    • Wang, Y.1    Shim, M.S.2    Levinson, N.S.3
  • 123
    • 36849067019 scopus 로고    scopus 로고
    • Nanocarriers as an emerging platform for cancer therapy
    • Peer D, Karp JM, Hong S et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007; 2: 751–760.
    • (2007) Nature Nanotechnology , vol.2 , pp. 751-760
    • Peer, D.1    Karp, J.M.2    Hong, S.3
  • 124
    • 84907217822 scopus 로고    scopus 로고
    • Stimuli-responsive nanomaterials for therapeutic protein delivery
    • Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release 2014; 194: 1–19.
    • (2014) Journal of Controlled Release , vol.194 , pp. 1-19
    • Lu, Y.1    Sun, W.2    Gu, Z.3
  • 125
    • 0035810901 scopus 로고    scopus 로고
    • Controlled drug delivery from polymers by mechanical signals
    • Lee KY, Peters MC, Mooney DJ. Controlled drug delivery from polymers by mechanical signals. Advanced Materials 2001; 13: 837–839.
    • (2001) Advanced Materials , vol.13 , pp. 837-839
    • Lee, K.Y.1    Peters, M.C.2    Mooney, D.J.3
  • 126
    • 79957602676 scopus 로고    scopus 로고
    • Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait
    • Aliberti S, MdSX Costa, AdC Passaro et al. Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait. Clinics 2011; 66: 367–372.
    • (2011) Clinics , vol.66 , pp. 367-372
    • Aliberti, S.1    Costa, M.2    Passaro, A.3
  • 127
    • 84942092503 scopus 로고    scopus 로고
    • Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials
    • Zhang F, Zang Y, Huang D et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications 2015; 6: 8356.
    • (2015) Nature Communications , vol.6 , pp. 8356
    • Zhang, F.1    Zang, Y.2    Huang, D.3
  • 128
    • 84934344111 scopus 로고    scopus 로고
    • Flexible pressure sensing film based on ultra-sensitive SWCNT/ PDMS spheres for monitoring human pulse signals
    • Tai Y-L, Yang Z-G. Flexible pressure sensing film based on ultra-sensitive SWCNT/ PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B 2015; 3: 5436–5441.
    • (2015) Journal of Materials Chemistry B , vol.3 , pp. 5436-5441
    • Tai, Y.-L.1    Yang, Z.-G.2
  • 129
    • 84878731954 scopus 로고    scopus 로고
    • Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
    • Schwartz G, Tee BCK, Mei J et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications 2013; 4: 1859.
    • (2013) Nature Communications , vol.4 , pp. 1859
    • Schwartz, G.1    Tee, B.C.K.2    Mei, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.