-
2
-
-
84897552123
-
Soft microfluidic assemblies of sensors, circuits, and radios for the skin
-
Xu S, Zhang Y, Jia L et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014; 344: 70–74.
-
(2014)
Science
, vol.344
, pp. 70-74
-
-
Xu, S.1
Zhang, Y.2
Jia, L.3
-
3
-
-
84893862009
-
A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
-
Gong S, Schwalb W, Wang Y et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications 2014; 5: 3132.
-
(2014)
Nature Communications
, vol.5
, pp. 3132
-
-
Gong, S.1
Schwalb, W.2
Wang, Y.3
-
6
-
-
84865098986
-
Camouflage and display for soft machines
-
Morin SA, Shepherd RF, Kwok SW et al. Camouflage and display for soft machines. Science 2012; 337: 828–832.
-
(2012)
Science
, vol.337
, pp. 828-832
-
-
Morin, S.A.1
Shepherd, R.F.2
Kwok, S.W.3
-
7
-
-
84919754365
-
Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures
-
Park J, Lee Y, Hong J et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014; 8: 12020–12029.
-
(2014)
ACS Nano
, vol.8
, pp. 12020-12029
-
-
Park, J.1
Lee, Y.2
Hong, J.3
-
8
-
-
84923362347
-
Stretchable silicon nanoribbon electronics for skin prosthesis
-
Kim J, Lee M, Shim HJ et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications 2014; 5: 5747.
-
(2014)
Nature Communications
, vol.5
, pp. 5747
-
-
Kim, J.1
Lee, M.2
Shim, H.J.3
-
10
-
-
84908355406
-
An implantable microfluidic device for self-monitoring of intraocular pressure
-
Araci IE, Su B, Quake SR et al. An implantable microfluidic device for self-monitoring of intraocular pressure. Nature Medicine 2014; 20: 1074–1078.
-
(2014)
Nature Medicine
, vol.20
, pp. 1074-1078
-
-
Araci, I.E.1
Su, B.2
Quake, S.R.3
-
11
-
-
84881168392
-
An ultra-lightweight design for imperceptible plastic electronics
-
Kaltenbrunner M, Sekitani T, Reeder J et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013; 499: 458–463.
-
(2013)
Nature
, vol.499
, pp. 458-463
-
-
Kaltenbrunner, M.1
Sekitani, T.2
Reeder, J.3
-
12
-
-
77950214388
-
Materials and mechanics for stretchable electronics
-
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010; 327: 1603–1607.
-
(2010)
Science
, vol.327
, pp. 1603-1607
-
-
Rogers, J.A.1
Someya, T.2
Huang, Y.3
-
13
-
-
62849115997
-
Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes
-
Ahn BY, Duoss EB, Motala MJ et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 2009; 323: 1590–1593.
-
(2009)
Science
, vol.323
, pp. 1590-1593
-
-
Ahn, B.Y.1
Duoss, E.B.2
Motala, M.J.3
-
14
-
-
51749096677
-
A rubberlike stretchable active matrix using elastic conductors
-
Sekitani T, Noguchi Y, Hata K et al. A rubberlike stretchable active matrix using elastic conductors. Science 2008; 321: 1468–1472.
-
(2008)
Science
, vol.321
, pp. 1468-1472
-
-
Sekitani, T.1
Noguchi, Y.2
Hata, K.3
-
15
-
-
84881479937
-
Stretchable nanoparticle conductors with self-organized conductive pathways
-
Kim Y, Zhu J, Yeom B et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013; 500: 59–63.
-
(2013)
Nature
, vol.500
, pp. 59-63
-
-
Kim, Y.1
Zhu, J.2
Yeom, B.3
-
17
-
-
84901942948
-
Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array
-
Choong C-L, Shim M-B, Lee B-S et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials 2014; 26: 3451–3458.
-
(2014)
Advanced Materials
, vol.26
, pp. 3451-3458
-
-
Choong, C.-L.1
Shim, M.-B.2
Lee, B.-S.3
-
18
-
-
84906569012
-
Natural-rubber-based flexible microfluidic device
-
Cabrera FC, de Souza JCP, Job AE et al. Natural-rubber-based flexible microfluidic device. RSC Advances 2014; 4: 35467–35475.
-
(2014)
RSC Advances
, vol.4
, pp. 35467-35475
-
-
Cabrera, F.C.1
de Souza, J.C.P.2
Job, A.E.3
-
19
-
-
84915735596
-
Microflotronics: A flexible, transparent, pressure-sensitive microfluidic film
-
Li R, Nie B, Digiglio P et al. Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Advanced Functional Materials 2014; 24: 6195–6203.
-
(2014)
Advanced Functional Materials
, vol.24
, pp. 6195-6203
-
-
Li, R.1
Nie, B.2
Digiglio, P.3
-
20
-
-
77952616543
-
Lab-on-a-Foil: Microfluidics on thin and flexible films
-
Focke M, Kosse D, Muller C et al. Lab-on-a-Foil: Microfluidics on thin and flexible films. Lab on a Chip 2010; 10: 1365–1386.
-
(2010)
Lab on a Chip
, vol.10
, pp. 1365-1386
-
-
Focke, M.1
Kosse, D.2
Muller, C.3
-
21
-
-
84916613492
-
Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
-
Pradel KC, Wu W, Ding Y et al. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Letters 2014; 14: 6897–6905.
-
(2014)
Nano Letters
, vol.14
, pp. 6897-6905
-
-
Pradel, K.C.1
Wu, W.2
Ding, Y.3
-
22
-
-
54549095063
-
Flexible piezotronic strain sensor
-
Zhou J, Gu Y, Fei P et al. Flexible piezotronic strain sensor. Nano Letters 2008; 8: 3035–3040.
-
(2008)
Nano Letters
, vol.8
, pp. 3035-3040
-
-
Zhou, J.1
Gu, Y.2
Fei, P.3
-
23
-
-
79957703248
-
Origin of piezoelectricity in an electrospun poly (Vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor
-
Mandal D, Yoon S, Kim KJ. Origin of piezoelectricity in an electrospun poly (vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromolecular Rapid Communications 2011; 32:831–837.
-
(2011)
Macromolecular Rapid Communications
, vol.32
, pp. 831-837
-
-
Mandal, D.1
Yoon, S.2
Kim, K.J.3
-
24
-
-
84871545967
-
Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies
-
Gao Q, Meguro H, Okamoto S et al. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 2012; 28: 17593–17596.
-
(2012)
Langmuir
, vol.28
, pp. 17593-17596
-
-
Gao, Q.1
Meguro, H.2
Okamoto, S.3
-
25
-
-
84890429754
-
Materials and optimized designs for human-machine interfaces via epidermal electronics
-
Jeong J-W, Yeo W-H, Akhtar A et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Advanced Materials 2013; 25: 6839–6846.
-
(2013)
Advanced Materials
, vol.25
, pp. 6839-6846
-
-
Jeong, J.-W.1
Yeo, W.-H.2
Akhtar, A.3
-
26
-
-
84887014365
-
Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
-
Yang Y, Zhang H, Lin Z-H et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013; 7: 9213–9222.
-
(2013)
ACS Nano
, vol.7
, pp. 9213-9222
-
-
Yang, Y.1
Zhang, H.2
Lin, Z.-H.3
-
27
-
-
55349137340
-
Rubber-based strain sensor fabricated using photolithography for intelligent tires
-
Matsuzaki R, Keating T, Todoroki A et al. Rubber-based strain sensor fabricated using photolithography for intelligent tires. Sensors and Actuators A: Physical 2008; 148: 1–9.
-
(2008)
Sensors and Actuators A: Physical
, vol.148
, pp. 1-9
-
-
Matsuzaki, R.1
Keating, T.2
Todoroki, A.3
-
28
-
-
77957125682
-
Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
-
Mannsfeld SCB, Tee BCK, Stoltenberg RM et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials 2010; 9: 859–864.
-
(2010)
Nature Materials
, vol.9
, pp. 859-864
-
-
Mannsfeld, S.C.B.1
Tee, B.C.K.2
Stoltenberg, R.M.3
-
29
-
-
83555165175
-
Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
-
Lipomi DJ, Vosgueritchian M, Tee BCK et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 2011; 6: 788–792.
-
(2011)
Nature Nanotechnology
, vol.6
, pp. 788-792
-
-
Lipomi, D.J.1
Vosgueritchian, M.2
Tee, B.C.K.3
-
30
-
-
84859707215
-
A highly elastic, capacitive strain gauge based on percolating nanotube networks
-
Cohen DJ, Mitra D, Peterson K et al. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Letters 2012; 12: 1821–1825.
-
(2012)
Nano Letters
, vol.12
, pp. 1821-1825
-
-
Cohen, D.J.1
Mitra, D.2
Peterson, K.3
-
31
-
-
79955848609
-
A stretchable carbon nanotube strain sensor for human-motion detection
-
Yamada T, Hayamizu Y, Yamamoto Y et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology 2011; 6: 296–301.
-
(2011)
Nature Nanotechnology
, vol.6
, pp. 296-301
-
-
Yamada, T.1
Hayamizu, Y.2
Yamamoto, Y.3
-
32
-
-
84866411818
-
A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
-
Pang C, Lee G-Y, Kim T-i et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials 2012; 11: 795–801.
-
(2012)
Nature Materials
, vol.11
, pp. 795-801
-
-
Pang, C.1
Lee, G.-Y.2
Kim, T.-I.3
-
33
-
-
84955292043
-
An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film
-
Pan L, Chortos A, Yu G et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications 2014; 5: 3002.
-
(2014)
Nature Communications
, vol.5
, pp. 3002
-
-
Pan, L.1
Chortos, A.2
Yu, G.3
-
34
-
-
84934929323
-
Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
-
Roh E, Hwang B-U, Kim D et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015; 9: 6252–6261.
-
(2015)
ACS Nano
, vol.9
, pp. 6252-6261
-
-
Roh, E.1
Hwang, B.-U.2
Kim, D.3
-
35
-
-
84937030756
-
Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli
-
Kim SY, Park S, Park HW et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Advanced Materials 2015; 27: 4178–4185.
-
(2015)
Advanced Materials
, vol.27
, pp. 4178-4185
-
-
Kim, S.Y.1
Park, S.2
Park, H.W.3
-
36
-
-
77957132246
-
Nanowire active-matrix circuitry for low-voltage macroscale artificial skin
-
Takei K, Takahashi T, Ho JC et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials 2010; 9: 821–826.
-
(2010)
Nature Materials
, vol.9
, pp. 821-826
-
-
Takei, K.1
Takahashi, T.2
Ho, J.C.3
-
37
-
-
84922821087
-
A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires
-
Wang J, Jiu J, Nogi M et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 2015; 7: 2926–2932.
-
(2015)
Nanoscale
, vol.7
, pp. 2926-2932
-
-
Wang, J.1
Jiu, J.2
Nogi, M.3
-
38
-
-
33744975724
-
High-resolution thin-film device to sense texture by touch
-
Maheshwari V, Saraf RF. High-resolution thin-film device to sense texture by touch. Science 2006; 312: 1501–1504.
-
(2006)
Science
, vol.312
, pp. 1501-1504
-
-
Maheshwari, V.1
Saraf, R.F.2
-
39
-
-
84879511612
-
Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin
-
Segev-Bar M, Landman A, Nir-Shapira M et al. Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin. ACS Applied Materials & Interfaces 2013; 5: 5531–5541.
-
(2013)
ACS Applied Materials & Interfaces
, vol.5
, pp. 5531-5541
-
-
Segev-Bar, M.1
Landman, A.2
Nir-Shapira, M.3
-
40
-
-
84907513459
-
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
-
Lee J, Kim S, Lee J et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014; 6: 11932–11939.
-
(2014)
Nanoscale
, vol.6
, pp. 11932-11939
-
-
Lee, J.1
Kim, S.2
Lee, J.3
-
41
-
-
79955420107
-
Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems
-
Wu C-Y, Liao W-H, Tung Y-C. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip 2011; 11: 1740–1746.
-
(2011)
Lab on a Chip
, vol.11
, pp. 1740-1746
-
-
Wu, C.-Y.1
Liao, W.-H.2
Tung, Y.-C.3
-
42
-
-
84882407315
-
A soft strain sensor based on ionic and metal liquids
-
Chossat JB, Yong-Lae P, Wood RJ et al. A soft strain sensor based on ionic and metal liquids. IEEE Sensors Journal 2013; 13: 3405–3414.
-
(2013)
IEEE Sensors Journal
, vol.13
, pp. 3405-3414
-
-
Chossat, J.B.1
Yong-Lae, P.2
Wood, R.J.3
-
43
-
-
84930652091
-
Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel
-
Jung T, Yang S. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 2015; 15: 11823.
-
(2015)
Sensors
, vol.15
-
-
Jung, T.1
Yang, S.2
-
44
-
-
80051607518
-
Epidermal electronics
-
Kim D-H, Lu N, Ma R et al. Epidermal electronics. Science 2011; 333: 838–843.
-
(2011)
Science
, vol.333
, pp. 838-843
-
-
Kim, D.-H.1
Lu, N.2
Ma, R.3
-
45
-
-
84858680812
-
Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications
-
Sokolov AN, Tee BCK, Bettinger CJ et al. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Accounts of Chemical Research 2012; 45: 361–371.
-
(2012)
Accounts of Chemical Research
, vol.45
, pp. 361-371
-
-
Sokolov, A.N.1
Tee, B.C.K.2
Bettinger, C.J.3
-
46
-
-
84919742989
-
Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin
-
Harada S, Kanao K, Yamamoto Y et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014; 8: 12851–12857.
-
(2014)
ACS Nano
, vol.8
, pp. 12851-12857
-
-
Harada, S.1
Kanao, K.2
Yamamoto, Y.3
-
47
-
-
84932194573
-
Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics
-
Dagdeviren C, Shi Y, Joe P et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nature Materials 2015; 14: 728–736.
-
(2015)
Nature Materials
, vol.14
, pp. 728-736
-
-
Dagdeviren, C.1
Shi, Y.2
Joe, P.3
-
48
-
-
84934967463
-
Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy
-
Choi S, Park J, Hyun W et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015; 9: 6626–6633.
-
(2015)
ACS Nano
, vol.9
, pp. 6626-6633
-
-
Choi, S.1
Park, J.2
Hyun, W.3
-
49
-
-
84923337917
-
Electronic dura mater for long-term multimodal neural interfaces
-
Minev IR, Musienko P, Hirsch A et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015; 347: 159–163.
-
(2015)
Science
, vol.347
, pp. 159-163
-
-
Minev, I.R.1
Musienko, P.2
Hirsch, A.3
-
50
-
-
84942292088
-
Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots
-
Di J, Yao S, Ye Y et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 2015; 9: 9407–9415.
-
(2015)
ACS Nano
, vol.9
, pp. 9407-9415
-
-
Di, J.1
Yao, S.2
Ye, Y.3
-
51
-
-
7544245225
-
Yield strain behavior of poly(Ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence
-
Lim JY, Kim SY. Yield strain behavior of poly(ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence. Polymer Journal 2004; 36: 769–773.
-
(2004)
Polymer Journal
, vol.36
, pp. 769-773
-
-
Lim, J.Y.1
Kim, S.Y.2
-
52
-
-
79954440671
-
Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates
-
Waller JH, Lalande L, Leterrier Y et al. Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates. Thin Solid Films 2011; 519: 4249–4255.
-
(2011)
Thin Solid Films
, vol.519
, pp. 4249-4255
-
-
Waller, J.H.1
Lalande, L.2
Leterrier, Y.3
-
53
-
-
84927583144
-
Technologies for printing sensors and electronics over large flexible substrates: A review
-
Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors Journal 2015; 15: 3164–3185.
-
(2015)
IEEE Sensors Journal
, vol.15
, pp. 3164-3185
-
-
Khan, S.1
Lorenzelli, L.2
Dahiya, R.S.3
-
54
-
-
35748982158
-
Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model
-
Widdle RD Jr, Bajaj AK, Davies P. Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model. International Journal of Engineering Science 2008; 46: 31–49.
-
(2008)
International Journal of Engineering Science
, vol.46
, pp. 31-49
-
-
Widdle, R.D.J.1
Bajaj, A.K.2
Davies, P.3
-
55
-
-
84890083325
-
Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties
-
Mi H-Y, Li Z, Turng L-S et al. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties. Materials & Design 2014; 56: 398–404.
-
(2014)
Materials & Design
, vol.56
, pp. 398-404
-
-
Mi, H.-Y.1
Li, Z.2
Turng, L.-S.3
-
56
-
-
84935031081
-
Soft core/shell packages for stretchable electronics
-
Lee CH, Ma Y, Jang K-I et al. Soft core/shell packages for stretchable electronics. Advanced Functional Materials 2015; 25: 3698–3704.
-
(2015)
Advanced Functional Materials
, vol.25
, pp. 3698-3704
-
-
Lee, C.H.1
Ma, Y.2
Jang, K.-I.3
-
57
-
-
84907331623
-
Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring
-
Jang K-I, Han SY, Xu S et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nature Communications 2014; 5: 4779.
-
(2014)
Nature Communications
, vol.5
, pp. 4779
-
-
Jang, K.-I.1
Han, S.Y.2
Xu, S.3
-
58
-
-
84925067717
-
Soft network composite materials with deterministic and bio-inspired designs
-
Jang K-I, Chung HU, Xu S et al. Soft network composite materials with deterministic and bio-inspired designs. Nature Communications 2015; 6: 6566.
-
(2015)
Nature Communications
, vol.6
, pp. 6566
-
-
Jang, K.-I.1
Chung, H.U.2
Xu, S.3
-
59
-
-
84857788014
-
Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye
-
Ha D, de Vries W, John SM et al. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed Microdevices 2012; 14: 207–215.
-
(2012)
Biomed Microdevices
, vol.14
, pp. 207-215
-
-
Ha, D.1
de Vries, W.2
John, S.M.3
-
60
-
-
84908520780
-
Chronically implanted pressure sensors: Challenges and state of the field
-
Yu L, Kim B, Meng E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014; 14: 20620.
-
(2014)
Sensors
, vol.14
-
-
Yu, L.1
Kim, B.2
Meng, E.3
-
61
-
-
84892908714
-
Spray-layer-by-layer carbon nano-tube/electrospun fiber electrodes for flexible chemiresistive sensor applications
-
Saetia K, Schnorr JM, Mannarino MM et al. Spray-layer-by-layer carbon nano-tube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Advanced Functional Materials 2014; 24: 492–502.
-
(2014)
Advanced Functional Materials
, vol.24
, pp. 492-502
-
-
Saetia, K.1
Schnorr, J.M.2
Mannarino, M.M.3
-
62
-
-
84907222535
-
Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes
-
Janczak D, Słoma M, Wróblewski G et al. Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes. Sensors 2014; 14: 17304.
-
(2014)
Sensors
, vol.14
-
-
Janczak, D.1
Słoma, M.2
Wróblewski, G.3
-
63
-
-
84923355308
-
Emerging carbon and post-carbon nanomaterial inks for printed electronics
-
Secor EB, Hersam MC. Emerging carbon and post-carbon nanomaterial inks for printed electronics. The Journal of Physical Chemistry Letters 2015; 6: 620–626.
-
(2015)
The Journal of Physical Chemistry Letters
, vol.6
, pp. 620-626
-
-
Secor, E.B.1
Hersam, M.C.2
-
64
-
-
84979964602
-
Conductive screen printing inks by gelation of graphene dispersions
-
Arapov K, Rubingh E, Abbel R et al. Conductive screen printing inks by gelation of graphene dispersions. Advanced Functional Materials 2015; 26: 586–593.
-
(2015)
Advanced Functional Materials
, vol.26
, pp. 586-593
-
-
Arapov, K.1
Rubingh, E.2
Abbel, R.3
-
65
-
-
84944916742
-
Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors
-
Wang S, Liu N, Yang C et al. Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Advances 2015; 5: 85799–85805.
-
(2015)
RSC Advances
, vol.5
, pp. 85799-85805
-
-
Wang, S.1
Liu, N.2
Yang, C.3
-
66
-
-
84895420705
-
A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors
-
Zhang J, Kruss S, Hilmer AJ et al. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors. Advanced Healthcare Materials 2014; 3: 412–423.
-
(2014)
Advanced Healthcare Materials
, vol.3
, pp. 412-423
-
-
Zhang, J.1
Kruss, S.2
Hilmer, A.J.3
-
67
-
-
84875458676
-
High performance flexible sensor based on inorganic nanomaterials
-
Hu B, Chen W, Zhou J. High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical 2013; 176: 522–533.
-
(2013)
Sensors and Actuators B: Chemical
, vol.176
, pp. 522-533
-
-
Hu, B.1
Chen, W.2
Zhou, J.3
-
68
-
-
84893085789
-
Single-walled carbon nanotube–poly(Por-phyrin) hybrid for volatile organic compounds detection
-
Sarkar T, Srinives S, Sarkar S et al. Single-walled carbon nanotube–poly(por-phyrin) hybrid for volatile organic compounds detection. The Journal of Physical Chemistry C 2014; 118: 1602–1610.
-
(2014)
The Journal of Physical Chemistry C
, vol.118
, pp. 1602-1610
-
-
Sarkar, T.1
Srinives, S.2
Sarkar, S.3
-
70
-
-
84934900548
-
Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion
-
Ryu S, Lee P, Chou JB et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015; 9: 5929–5936.
-
(2015)
ACS Nano
, vol.9
, pp. 5929-5936
-
-
Ryu, S.1
Lee, P.2
Chou, J.B.3
-
71
-
-
85027949435
-
Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes
-
Yeom C, Chen K, Kiriya D et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Advanced Materials 2015; 27: 1561–1566.
-
(2015)
Advanced Materials
, vol.27
, pp. 1561-1566
-
-
Yeom, C.1
Chen, K.2
Kiriya, D.3
-
73
-
-
84908637433
-
Highly sensitive reduced graphene oxide microelectrode array sensor
-
Ng AMH, Kenry, Teck Lim C et al. Highly sensitive reduced graphene oxide microelectrode array sensor. Biosensors and Bioelectronics 2015; 65: 265–273.
-
(2015)
Biosensors and Bioelectronics
, vol.65
, pp. 265-273
-
-
Ng, A.M.H.1
Kenry, T.L.C.2
-
74
-
-
84891369385
-
Ultrafast graphene oxide humidity sensors
-
Borini S, White R, Wei D et al. Ultrafast graphene oxide humidity sensors. ACS Nano 2013; 7: 11166–11173.
-
(2013)
ACS Nano
, vol.7
-
-
Borini, S.1
White, R.2
Wei, D.3
-
75
-
-
84890814830
-
Biocompatible and flexible graphene oxide/ upconversion nanoparticle hybrid film for optical pH sensing
-
Yan L, Chang Y-N, Yin W et al. Biocompatible and flexible graphene oxide/ upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics 2014; 16: 1576–1582.
-
(2014)
Physical Chemistry Chemical Physics
, vol.16
, pp. 1576-1582
-
-
Yan, L.1
Chang, Y.-N.2
Yin, W.3
-
76
-
-
84867443349
-
Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose
-
Park SJ, Kwon OS, Lee SH et al. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Letters 2012; 12: 5082–5090.
-
(2012)
Nano Letters
, vol.12
, pp. 5082-5090
-
-
Park, S.J.1
Kwon, O.S.2
Lee, S.H.3
-
77
-
-
84903952295
-
Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection
-
Kulkarni GS, Reddy K, Zhong Z et al. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nature Communications 2014; 5: 4376.
-
(2014)
Nature Communications
, vol.5
, pp. 4376
-
-
Kulkarni, G.S.1
Reddy, K.2
Zhong, Z.3
-
78
-
-
84870792038
-
Flexible graphene bio-nanosensor for lactate
-
Labroo P, Cui Y. Flexible graphene bio-nanosensor for lactate. Biosensors and Bioelectronics 2013; 41: 852–856.
-
(2013)
Biosensors and Bioelectronics
, vol.41
, pp. 852-856
-
-
Labroo, P.1
Cui, Y.2
-
79
-
-
84861735487
-
Flexible glucose sensor using CVD-grown graphene-based field effect transistor
-
Kwak YH, Choi DS, Kim YN et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors and Bioelectronics 2012; 37: 82–87.
-
(2012)
Biosensors and Bioelectronics
, vol.37
, pp. 82-87
-
-
Kwak, Y.H.1
Choi, D.S.2
Kim, Y.N.3
-
80
-
-
84863229334
-
Biological and chemical sensors based on graphene materials
-
Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews 2012; 41: 2283–2307.
-
(2012)
Chemical Society Reviews
, vol.41
, pp. 2283-2307
-
-
Liu, Y.1
Dong, X.2
Chen, P.3
-
81
-
-
84868109917
-
Graphene-based transparent strain sensor
-
Bae S-H, Lee Y, Sharma BK et al. Graphene-based transparent strain sensor. Carbon 2013; 51: 236–242.
-
(2013)
Carbon
, vol.51
, pp. 236-242
-
-
Bae, S.-H.1
Lee, Y.2
Sharma, B.K.3
-
82
-
-
84890829755
-
Scalable fabrication of high-performance and flexible graphene strain sensors
-
Tian H, Shu Y, Cui Y-L et al. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014; 6: 699–705.
-
(2014)
Nanoscale
, vol.6
, pp. 699-705
-
-
Tian, H.1
Shu, Y.2
Cui, Y.-L.3
-
83
-
-
84923330898
-
Transparent and flexible cellulose nanocrystal/ reduced graphene oxide film for proximity sensing
-
Sadasivuni KK, Kafy A, Zhai L et al. Transparent and flexible cellulose nanocrystal/ reduced graphene oxide film for proximity sensing. Small 2015; 11: 994–1002.
-
(2015)
Small
, vol.11
, pp. 994-1002
-
-
Sadasivuni, K.K.1
Kafy, A.2
Zhai, L.3
-
84
-
-
77955808092
-
Stretchable liquid tactile sensor for robot-joints
-
3–7 May 2010; Anchorage, Alaska, USA
-
Noda K, Iwase E, Matsumoto K et al. Stretchable liquid tactile sensor for robot-joints. 2010 IEEE International Conference on Robotics and Automation (ICRA); 3–7 May 2010; Anchorage, Alaska, USA; 2010: 4212–4217.
-
(2010)
2010 IEEE International Conference on Robotics and Automation (ICRA)
, pp. 4212-4217
-
-
Noda, K.1
Iwase, E.2
Matsumoto, K.3
-
85
-
-
84936970614
-
Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns
-
Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Advances 2015; 5: 57686–57691.
-
(2015)
RSC Advances
, vol.5
, pp. 57686-57691
-
-
Wang, L.1
Liu, J.2
-
86
-
-
0024715196
-
Determination of poisson's ratio for polyimide films
-
Bauer CL, Farris RJ. Determination of poisson's ratio for polyimide films. Polymer Engineering & Science 1989; 29: 1107–1110.
-
(1989)
Polymer Engineering & Science
, vol.29
, pp. 1107-1110
-
-
Bauer, C.L.1
Farris, R.J.2
-
87
-
-
78650756195
-
Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres
-
Lechat C, Bunsell AR, Davies P. Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. Journal of Materials Science 2011; 46: 528–533.
-
(2011)
Journal of Materials Science
, vol.46
, pp. 528-533
-
-
Lechat, C.1
Bunsell, A.R.2
Davies, P.3
-
89
-
-
84907947600
-
Embedded 3D printing of strain sensors within highly stretchable elastomers
-
Muth JT, Vogt DM, Truby RL et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials 2014; 26: 6307–6312.
-
(2014)
Advanced Materials
, vol.26
, pp. 6307-6312
-
-
Muth, J.T.1
Vogt, D.M.2
Truby, R.L.3
-
90
-
-
85027932104
-
Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics
-
Melzer M, Karnaushenko D, Lin G et al. Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Advanced Materials 2015; 27: 1333–1338.
-
(2015)
Advanced Materials
, vol.27
, pp. 1333-1338
-
-
Melzer, M.1
Karnaushenko, D.2
Lin, G.3
-
91
-
-
85058335209
-
Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics
-
Lee S, Shin S, Lee S et al. Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials 2015; 25: 3105–3105.
-
(2015)
Advanced Functional Materials
, vol.25
, pp. 3105
-
-
Lee, S.1
Shin, S.2
Lee, S.3
-
92
-
-
79953883485
-
Microstructured silicone substrate for printable and stretchable metallic films
-
Robinson AP, Minev I, Graz IM et al. Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 2011; 27: 4279–4284.
-
(2011)
Langmuir
, vol.27
, pp. 4279-4284
-
-
Robinson, A.P.1
Minev, I.2
Graz, I.M.3
-
93
-
-
84943194466
-
Fractal design concepts for stretchable electronics
-
Fan JA, Yeo W-H, Su Y et al. Fractal design concepts for stretchable electronics. Nature Communications 2014; 5: 3266.
-
(2014)
Nature Communications
, vol.5
, pp. 3266
-
-
Fan, J.A.1
Yeo, W.-H.2
Su, Y.3
-
95
-
-
84937146113
-
Cloth-based power shirt for wearable energy harvesting and clothes ornamentation
-
Li S, Zhong Q, Zhong J et al. Cloth-based power shirt for wearable energy harvesting and clothes ornamentation. ACS Applied Materials & Interfaces 2015; 7: 14912–14916.
-
(2015)
ACS Applied Materials & Interfaces
, vol.7
, pp. 14912-14916
-
-
Li, S.1
Zhong, Q.2
Zhong, J.3
-
98
-
-
84901649634
-
Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
-
Amjadi M, Pichitpajongkit A, Lee S et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014; 8: 5154–5163.
-
(2014)
ACS Nano
, vol.8
, pp. 5154-5163
-
-
Amjadi, M.1
Pichitpajongkit, A.2
Lee, S.3
-
99
-
-
84919937169
-
Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites
-
Boland CS, Khan U, Backes C et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 2014; 8: 8819–8830.
-
(2014)
ACS Nano
, vol.8
, pp. 8819-8830
-
-
Boland, C.S.1
Khan, U.2
Backes, C.3
-
100
-
-
84905644863
-
Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors
-
Kong J-H, Jang N-S, Kim S-H et al. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014; 77: 199–207.
-
(2014)
Carbon
, vol.77
, pp. 199-207
-
-
Kong, J.-H.1
Jang, N.-S.2
Kim, S.-H.3
-
101
-
-
84934933338
-
Breathable and stretchable temperature sensors inspired by skin
-
Chen Y, Lu B, Chen Y et al. Breathable and stretchable temperature sensors inspired by skin. Scientific Reports 2015; 5: 11505.
-
(2015)
Scientific Reports
, vol.5
-
-
Chen, Y.1
Lu, B.2
Chen, Y.3
-
102
-
-
84923194944
-
Highly deformable liquid-state heterojunction sensors
-
Ota H, Chen K, Lin Y et al. Highly deformable liquid-state heterojunction sensors. Nature Communications 2014; 5: 5032.
-
(2014)
Nature Communications
, vol.5
, pp. 5032
-
-
Ota, H.1
Chen, K.2
Lin, Y.3
-
103
-
-
84953455650
-
Microfluidics for research and applications in oncology
-
Chaudhuri PK, Ebrahimi Warkiani M, Jing T et al. Microfluidics for research and applications in oncology. Analyst 2016; 141: 504–524.
-
(2016)
Analyst
, vol.141
, pp. 504-524
-
-
Chaudhuri, P.K.1
Ebrahimi Warkiani, M.2
Jing, T.3
-
104
-
-
42549111682
-
Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
-
Dickey MD, Chiechi RC, Larsen RJ et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials 2008; 18: 1097–1104.
-
(2008)
Advanced Functional Materials
, vol.18
, pp. 1097-1104
-
-
Dickey, M.D.1
Chiechi, R.C.2
Larsen, R.J.3
-
105
-
-
84894277936
-
Iontronic microdroplet array for flexible ultrasensitive tactile sensing
-
Nie B, Li R, Brandt JD et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab on a Chip 2014; 14: 1107–1116.
-
(2014)
Lab on a Chip
, vol.14
, pp. 1107-1116
-
-
Nie, B.1
Li, R.2
Brandt, J.D.3
-
106
-
-
84908046842
-
Microfluidic tactile sensors for three-dimensional contact force measurements
-
Nie B, Li R, Brandt JD et al. Microfluidic tactile sensors for three-dimensional contact force measurements. Lab on a Chip 2014; 14: 4344–4353.
-
(2014)
Lab on a Chip
, vol.14
, pp. 4344-4353
-
-
Nie, B.1
Li, R.2
Brandt, J.D.3
-
107
-
-
84961675331
-
Highly flexible graphene oxide nanosus-pension liquid-based microfluidic tactile sensor
-
Kenry Yeo JC, Yu J, Shang M et al. Highly flexible graphene oxide nanosus-pension liquid-based microfluidic tactile sensor. Small 2016; 12: 1593–1604.
-
(2016)
Small
, vol.12
, pp. 1593-1604
-
-
Kenry Yeo, J.C.1
Yu, J.2
Shang, M.3
-
108
-
-
84923305433
-
Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation
-
Lee WC, Lim CH, Kenry Su C et al. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 2015; 11: 963–969.
-
(2015)
Small
, vol.11
, pp. 963-969
-
-
Lee, W.C.1
Lim, C.H.2
Kenry Su, C.3
-
109
-
-
84961963922
-
Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications
-
Kenry, Loh KP, Lim CT. Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications. Small 2015; 11: 5105–5117.
-
(2015)
Small
, vol.11
, pp. 5105-5117
-
-
Kenry, L.K.P.1
Lim, C.T.2
-
110
-
-
78449293089
-
Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films
-
Chang H, Sun Z, Yuan Q et al. Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Advanced Materials 2010; 22: 4872–4876.
-
(2010)
Advanced Materials
, vol.22
, pp. 4872-4876
-
-
Chang, H.1
Sun, Z.2
Yuan, Q.3
-
111
-
-
84904167696
-
Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control
-
Seo H, Ahn S, Kim J et al. Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control. Scientific Reports 2014; 4: 5642.
-
(2014)
Scientific Reports
, vol.4
, pp. 5642
-
-
Seo, H.1
Ahn, S.2
Kim, J.3
-
112
-
-
36749039718
-
Electronic transport properties of individual chemically reduced graphene oxide sheets
-
Gómez-Navarro C, Weitz RT, Bittner AM et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters 2007; 7: 3499–3503.
-
(2007)
Nano Letters
, vol.7
, pp. 3499-3503
-
-
Gómez-Navarro, C.1
Weitz, R.T.2
Bittner, A.M.3
-
113
-
-
79955844716
-
Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites
-
Gudarzi MM, Sharif F. Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites. Soft Matter 2011; 7: 3432–3440.
-
(2011)
Soft Matter
, vol.7
, pp. 3432-3440
-
-
Gudarzi, M.M.1
Sharif, F.2
-
116
-
-
84977134311
-
Restoring natural sensory feedback in real-time bidirectional hand prostheses
-
Raspopovic S, Capogrosso M, Petrini FM et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine 2014; 6: 222ra219–222ra219.
-
(2014)
Science Translational Medicine
, vol.6
, pp. 222ra219-222ra219
-
-
Raspopovic, S.1
Capogrosso, M.2
Petrini, F.M.3
-
119
-
-
33749153845
-
Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial
-
Mayer JM, Mooney V, Matheson LN et al. Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation 2006; 87: 1310–1317.
-
(2006)
Archives of Physical Medicine and Rehabilitation
, vol.87
, pp. 1310-1317
-
-
Mayer, J.M.1
Mooney, V.2
Matheson, L.N.3
-
120
-
-
84889010832
-
Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates
-
James CB, Naveen R, Kaivon P et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering 2013; 10: 066014.
-
(2013)
Journal of Neural Engineering
, vol.10
-
-
James, C.B.1
Naveen, R.2
Kaivon, P.3
-
121
-
-
84896713546
-
The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system
-
Moshayedi P, Ng G, Kwok JCF et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 2014; 35: 3919–3925.
-
(2014)
Biomaterials
, vol.35
, pp. 3919-3925
-
-
Moshayedi, P.1
Ng, G.2
Kwok, J.C.F.3
-
122
-
-
84904538841
-
Stimuli-responsive materials for controlled release of theranostic agents
-
Wang Y, Shim MS, Levinson NS et al. Stimuli-responsive materials for controlled release of theranostic agents. Advanced Functional Materials 2014; 24: 4206–4220.
-
(2014)
Advanced Functional Materials
, vol.24
, pp. 4206-4220
-
-
Wang, Y.1
Shim, M.S.2
Levinson, N.S.3
-
123
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007; 2: 751–760.
-
(2007)
Nature Nanotechnology
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
-
124
-
-
84907217822
-
Stimuli-responsive nanomaterials for therapeutic protein delivery
-
Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release 2014; 194: 1–19.
-
(2014)
Journal of Controlled Release
, vol.194
, pp. 1-19
-
-
Lu, Y.1
Sun, W.2
Gu, Z.3
-
125
-
-
0035810901
-
Controlled drug delivery from polymers by mechanical signals
-
Lee KY, Peters MC, Mooney DJ. Controlled drug delivery from polymers by mechanical signals. Advanced Materials 2001; 13: 837–839.
-
(2001)
Advanced Materials
, vol.13
, pp. 837-839
-
-
Lee, K.Y.1
Peters, M.C.2
Mooney, D.J.3
-
126
-
-
79957602676
-
Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait
-
Aliberti S, MdSX Costa, AdC Passaro et al. Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait. Clinics 2011; 66: 367–372.
-
(2011)
Clinics
, vol.66
, pp. 367-372
-
-
Aliberti, S.1
Costa, M.2
Passaro, A.3
-
127
-
-
84942092503
-
Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials
-
Zhang F, Zang Y, Huang D et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications 2015; 6: 8356.
-
(2015)
Nature Communications
, vol.6
, pp. 8356
-
-
Zhang, F.1
Zang, Y.2
Huang, D.3
-
128
-
-
84934344111
-
Flexible pressure sensing film based on ultra-sensitive SWCNT/ PDMS spheres for monitoring human pulse signals
-
Tai Y-L, Yang Z-G. Flexible pressure sensing film based on ultra-sensitive SWCNT/ PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B 2015; 3: 5436–5441.
-
(2015)
Journal of Materials Chemistry B
, vol.3
, pp. 5436-5441
-
-
Tai, Y.-L.1
Yang, Z.-G.2
-
129
-
-
84878731954
-
Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
-
Schwartz G, Tee BCK, Mei J et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications 2013; 4: 1859.
-
(2013)
Nature Communications
, vol.4
, pp. 1859
-
-
Schwartz, G.1
Tee, B.C.K.2
Mei, J.3
|