-
1
-
-
84876112904
-
Comparison of in silico models for prediction of mutagenicity
-
Bakhtyari, N. G., Raitano, G., Benfenati, E., Martin, T., and Young, D. (2013). Comparison of in silico models for prediction of mutagenicity. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 31, 45-66. doi: 10.1080/10590501.2013.763576
-
(2013)
J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev.
, vol.31
, pp. 45-66
-
-
Bakhtyari, N.G.1
Raitano, G.2
Benfenati, E.3
Martin, T.4
Young, D.5
-
2
-
-
84883069486
-
KNIME-CDK: workflow-driven cheminformatics
-
Beisken, S., Meinl, T., Wiswedel, B., De Figueiredo, L. F., Berthold, M., and Steinbeck, C. (2013). KNIME-CDK: workflow-driven cheminformatics. BMC Bioinformatics 14:257. doi: 10.1186/1471-2105-14-257
-
(2013)
BMC Bioinformatics
, vol.14
-
-
Beisken, S.1
Meinl, T.2
Wiswedel, B.3
De Figueiredo, L.F.4
Berthold, M.5
Steinbeck, C.6
-
3
-
-
84879557098
-
KNIME: the konstanz information miner
-
eds C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker (Heidelberg: Springer)
-
Berthold, M. C. N., Dill, F., Gabriel, T. R., Kotter, T., Meinl, T., et al. (2007). "KNIME: the konstanz information miner," in Studies in Classification, Data Analysis, and Knowledge Organization, eds C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker (Heidelberg: Springer), 319-326.
-
(2007)
Studies in Classification, Data Analysis, and Knowledge Organization
, pp. 319-326
-
-
Berthold, M.C.N.1
Dill, F.2
Gabriel, T.R.3
Kotter, T.4
Meinl, T.5
-
4
-
-
84907834013
-
Towards global QSAR model building for acute toxicity: munro database case study
-
Chavan, S., Nicholls, I. A., Karlsson, B. C., Rosengren, A. M., Ballabio, D., Consonni, V., et al. (2014). Towards global QSAR model building for acute toxicity: munro database case study. Int. J. Mol. Sci. 15, 18162-18174. doi: 10.3390/ijms151018162
-
(2014)
Int. J. Mol. Sci.
, vol.15
, pp. 18162-18174
-
-
Chavan, S.1
Nicholls, I.A.2
Karlsson, B.C.3
Rosengren, A.M.4
Ballabio, D.5
Consonni, V.6
-
5
-
-
84881360676
-
In silico ADMET prediction: recent advances, current challenges and future trends
-
Cheng, F., Li, W., Liu, G., and Tang, Y. (2013). In silico ADMET prediction: recent advances, current challenges and future trends. Curr. Top. Med. Chem. 13, 1273-1289. doi: 10.2174/15680266113139990033
-
(2013)
Curr. Top. Med. Chem.
, vol.13
, pp. 1273-1289
-
-
Cheng, F.1
Li, W.2
Liu, G.3
Tang, Y.4
-
6
-
-
84876742787
-
In silico quantitative structure toxicity relationship of chemical compounds: some case studies
-
Deeb, O., and Goodarzi, M. (2012). In silico quantitative structure toxicity relationship of chemical compounds: some case studies. Curr. Drug Saf. 7, 289-297. doi: 10.2174/157488612804096533
-
(2012)
Curr. Drug Saf.
, vol.7
, pp. 289-297
-
-
Deeb, O.1
Goodarzi, M.2
-
7
-
-
85017158091
-
Molecular similarity-based predictions of the Tox21 screening outcome.
-
Drwal, M., Siramshetty, V., Banerjee, P., Goede, A., Preissner, R., and Dunkel, M. (2015). Molecular similarity-based predictions of the Tox21 screening outcome. Front. Environ. Sci. 3:54. doi: 10.3389/fenvs.2015.00054
-
(2015)
Front. Environ. Sci.
, vol.3
, pp. 54
-
-
Drwal, M.1
Siramshetty, V.2
Banerjee, P.3
Goede, A.4
Preissner, R.5
Dunkel, M.6
-
8
-
-
84918779199
-
Machine-learning techniques applied to antibacterial drug discovery
-
Durrant, J. D., and Amaro, R. E. (2015). Machine-learning techniques applied to antibacterial drug discovery. Chem. Biol. Drug Des. 85, 14-21. doi: 10.1111/cbdd.12423
-
(2015)
Chem. Biol. Drug Des.
, vol.85
, pp. 14-21
-
-
Durrant, J.D.1
Amaro, R.E.2
-
9
-
-
79960608914
-
Modernizing toxicity tests
-
Erickson, B. E. (2011). Modernizing toxicity tests. Chem. Eng. News 89, 25-26. doi: 10.1021/cen-v089n029.p025
-
(2011)
Chem. Eng. News
, vol.89
, pp. 25-26
-
-
Erickson, B.E.1
-
10
-
-
0035412779
-
Can 3D structural parameters be predicted from 2D (topological) molecular descriptors? J
-
Estrada, E., Molina, E., and Perdomo-Lopez, I. (2001). Can 3D structural parameters be predicted from 2D (topological) molecular descriptors? J. Chem. Inf. Comput. Sci. 41, 1015-1021. doi: 10.1021/ci000170v
-
(2001)
Chem. Inf. Comput. Sci.
, vol.41
, pp. 1015-1021
-
-
Estrada, E.1
Molina, E.2
Perdomo-Lopez, I.3
-
11
-
-
84924959832
-
Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients
-
Freitas, A. A., Limbu, K., and Ghafourian, T. (2015). Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients. J. Cheminform. 7, 6. doi: 10.1186/s13321-015-0054-x
-
(2015)
J. Cheminform.
, vol.7
, pp. 6
-
-
Freitas, A.A.1
Limbu, K.2
Ghafourian, T.3
-
12
-
-
84855218909
-
Theoretical study of GSK-3 alpha: neural networks QSAR studies for the design of new inhibitors using 2D descriptors
-
Garcia, I., Fall, Y., Garcia-Mera, X., and Prado-Prado, F. (2011). Theoretical study of GSK-3 alpha: neural networks QSAR studies for the design of new inhibitors using 2D descriptors. Mol. Divers. 15, 947-955. doi: 10.1007/s11030-011-9325-2
-
(2011)
Mol. Divers.
, vol.15
, pp. 947-955
-
-
Garcia, I.1
Fall, Y.2
Garcia-Mera, X.3
Prado-Prado, F.4
-
13
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explorations 11, 10-18. doi: 10.1145/1656274.1656278
-
(2009)
SIGKDD Explorations
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
14
-
-
84904350064
-
Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway
-
Huang, R. L., Sakamuru, S., Martin, M. T., Reif, D. M., Judson, R. S., Houck, K. A., et al. (2014). Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 4, 1664-1673. doi: 10.1038/srep05664
-
(2014)
Sci. Rep.
, vol.4
, pp. 1664-1673
-
-
Huang, R.L.1
Sakamuru, S.2
Martin, M.T.3
Reif, D.M.4
Judson, R.S.5
Houck, K.A.6
-
15
-
-
77951675220
-
In vitro screening of environmental chemicals for targeted testing prioritization: the toxcast project
-
Judson, R. S., Houck, K. A., Kavlock, R. J., Knudsen, T. B., Martin, M. T., Mortensen, H. M., et al. (2010). In vitro screening of environmental chemicals for targeted testing prioritization: the toxcast project. Environ. Health Perspect. 118, 485-492. doi: 10.1289/ehp.0901392
-
(2010)
Environ. Health Perspect.
, vol.118
, pp. 485-492
-
-
Judson, R.S.1
Houck, K.A.2
Kavlock, R.J.3
Knudsen, T.B.4
Martin, M.T.5
Mortensen, H.M.6
-
16
-
-
35349025783
-
Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility
-
Knight, A. (2007). Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility. Altern. Lab. Anim. 35, 641-659. Available online at: http://www.atla.org.uk/systematic-reviews-of-animal-experiments-demonstrate-poor-human-clinical-and-toxicological-utility/
-
(2007)
Altern. Lab. Anim.
, vol.35
, pp. 641-659
-
-
Knight, A.1
-
17
-
-
4344645978
-
Can the pharmaceutical industry reduce attrition rates? Nat
-
Kola, I., and Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711-715. doi: 10.1038/nrd1470
-
(2004)
Rev. Drug Discov.
, vol.3
, pp. 711-715
-
-
Kola, I.1
Landis, J.2
-
18
-
-
85042116457
-
Machine learning for drug design
-
Liu, Y. (2015). Machine learning for drug design. Int. J. Comput. Inf. Technol. 4, 1-7.
-
(2015)
Int. J. Comput. Inf. Technol.
, vol.4
, pp. 1-7
-
-
Liu, Y.1
-
19
-
-
84903693496
-
Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays
-
Low, Y. S., Sedykh, A. Y., Rusyn, I., and Tropsha, A. (2014). Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays. Curr. Top. Med. Chem. 14, 1356-1364. doi: 10.2174/1568026614666140506121116
-
(2014)
Curr. Top. Med. Chem.
, vol.14
, pp. 1356-1364
-
-
Low, Y.S.1
Sedykh, A.Y.2
Rusyn, I.3
Tropsha, A.4
-
20
-
-
80052549683
-
Predictive model of rat reproductive toxicity from toxcast high throughput screening
-
Martin, M. T., Knudsen, T. B., Reif, D. M., Houck, K. A., Judson, R. S., Kavlock, R. J., et al. (2011). Predictive model of rat reproductive toxicity from toxcast high throughput screening. Biol. Reprod. 85, 327-339. doi: 10.1095/biolreprod.111.090977
-
(2011)
Biol. Reprod.
, vol.85
, pp. 327-339
-
-
Martin, M.T.1
Knudsen, T.B.2
Reif, D.M.3
Houck, K.A.4
Judson, R.S.5
Kavlock, R.J.6
-
21
-
-
84910109687
-
An overview of data mining algorithms in drug induced toxicity prediction
-
Omer, A., Singh, P., Yadav, N. K., and Singh, R. K. (2014). An overview of data mining algorithms in drug induced toxicity prediction. Mini Rev. Med. Chem. 14, 345-354. doi: 10.2174/1389557514666140219110244
-
(2014)
Mini Rev. Med. Chem.
, vol.14
, pp. 345-354
-
-
Omer, A.1
Singh, P.2
Yadav, N.K.3
Singh, R.K.4
-
22
-
-
0036985975
-
On the information content of 2D and 3D descriptors for QSAR
-
Oprea, T. I. (2002). On the information content of 2D and 3D descriptors for QSAR. J. Braz. Chem. Soc. 13, 811-815. doi: 10.1590/s0103-50532002000600013
-
(2002)
J. Braz. Chem. Soc.
, vol.13
, pp. 811-815
-
-
Oprea, T.I.1
-
23
-
-
84927735077
-
Massively multitask networks for drug discovery
-
arXiv:1502.02072
-
Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande, V. (2015). Massively multitask networks for drug discovery. arXiv:1502.02072. Available online at: http://arxiv.org/abs/1502.02072
-
(2015)
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
24
-
-
84922918827
-
Contribution of new technologies to characterization and prediction of adverse effects
-
Rouquié, D., Heneweer, M., Botham, J., Ketelslegers, H., Markell, L., Pfister, T., et al. (2015). Contribution of new technologies to characterization and prediction of adverse effects. Crit. Rev. Toxicol. 45, 172-183. doi: 10.3109/10408444.2014.986054
-
(2015)
Crit. Rev. Toxicol.
, vol.45
, pp. 172-183
-
-
Rouquié, D.1
Heneweer, M.2
Botham, J.3
Ketelslegers, H.4
Markell, L.5
Pfister, T.6
-
25
-
-
84925783987
-
A review on principles, theory and practices of 2D-QSAR
-
Roy, K., and Das, R. N. (2014). A review on principles, theory and practices of 2D-QSAR. Curr. Drug Metab. 15, 346-379. doi: 10.2174/1389200215666140908102230
-
(2014)
Curr. Drug Metab.
, vol.15
, pp. 346-379
-
-
Roy, K.1
Das, R.N.2
-
26
-
-
61849085398
-
QSAR Studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors
-
Roy, P. P., and Roy, K. (2009). QSAR Studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chem. Biol. Drug Des. 73, 442-455. doi: 10.1111/j.1747-0285.2009.00791.x
-
(2009)
Chem. Biol. Drug Des.
, vol.73
, pp. 442-455
-
-
Roy, P.P.1
Roy, K.2
-
28
-
-
84864750654
-
A three-stage algorithm to make toxicologically relevant activity calls from quantitative high throughput screening data
-
Shockley, K. R. (2012). A three-stage algorithm to make toxicologically relevant activity calls from quantitative high throughput screening data. Environ. Health Perspect. 120, 1107-1115. doi: 10.1289/ehp.1104688
-
(2012)
Environ. Health Perspect.
, vol.120
, pp. 1107-1115
-
-
Shockley, K.R.1
-
29
-
-
80053516123
-
Predictive models of prenatal developmental toxicity from toxcast high-throughput screening data
-
Sipes, N. S., Martin, M. T., Reif, D. M., Kleinstreuer, N. C., Judson, R. S., Singh, A. V., et al. (2011). Predictive models of prenatal developmental toxicity from toxcast high-throughput screening data. Toxicol. Sci. 124, 109-127. doi: 10.1093/toxsci/kfr220
-
(2011)
Toxicol. Sci.
, vol.124
, pp. 109-127
-
-
Sipes, N.S.1
Martin, M.T.2
Reif, D.M.3
Kleinstreuer, N.C.4
Judson, R.S.5
Singh, A.V.6
-
30
-
-
84883339723
-
A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
-
Smusz, S., Kurczab, R., and Bojarski, A. J. (2013). A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds. Chemometr. Intel. Lab. Syst. 128, 89-100. doi: 10.1016/j.chemolab.2013.08.003
-
(2013)
Chemometr. Intel. Lab. Syst.
, vol.128
, pp. 89-100
-
-
Smusz, S.1
Kurczab, R.2
Bojarski, A.J.3
-
31
-
-
84923343419
-
Rule-based classification models of molecular autofluorescence
-
Su, B. H., Tu, Y. S., Lin, O. A., Harn, Y. C., Shen, M. Y., and Tseng, Y. J. (2015). Rule-based classification models of molecular autofluorescence. J. Chem. Inf. Model. 55, 434-445. doi: 10.1021/ci5007432
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 434-445
-
-
Su, B.H.1
Tu, Y.S.2
Lin, O.A.3
Harn, Y.C.4
Shen, M.Y.5
Tseng, Y.J.6
-
32
-
-
84862775836
-
Paradigm shift in toxicity testing and modeling
-
Sun, H. M., Xia, M. H., Austin, C. P., and Huang, R. L. (2012). Paradigm shift in toxicity testing and modeling. Aaps J. 14, 473-480. doi: 10.1208/s12248-012-9358-1
-
(2012)
Aaps J.
, vol.14
, pp. 473-480
-
-
Sun, H.M.1
Xia, M.H.2
Austin, C.P.3
Huang, R.L.4
-
33
-
-
84879599189
-
Improving the human hazard characterization of chemicals: a Tox21 update
-
Tice, R. R., Austin, C. P., Kavlock, R. J., and Bucher, J. R. (2013). Improving the human hazard characterization of chemicals: a Tox21 update. Environ. Health Perspect. 121, 756-765. doi: 10.1289/ehp.1205784
-
(2013)
Environ. Health Perspect.
, vol.121
, pp. 756-765
-
-
Tice, R.R.1
Austin, C.P.2
Kavlock, R.J.3
Bucher, J.R.4
-
34
-
-
84890016373
-
Comprehension of drug toxicity: software and databases
-
Toropov, A. A., Toropova, A. P., Raska, I. Jr., Leszczynska, D., and Leszczynski, J. (2014). Comprehension of drug toxicity: software and databases. Comput. Biol. Med. 45, 20-25. doi: 10.1016/j.compbiomed.2013.11.013
-
(2014)
Comput. Biol. Med.
, vol.45
, pp. 20-25
-
-
Toropov, A.A.1
Toropova, A.P.2
Raska, I.3
Leszczynska, D.4
Leszczynski, J.5
-
35
-
-
84958640223
-
Toxicity prediction using deep learning
-
arXiv.
-
Unterthiner, T., Mayr, A., Klambauer, G., and Hochreiter, S. (2015). Toxicity prediction using deep learning. arXiv. Available online at: http://arxiv.org/abs/1503.01445
-
(2015)
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Hochreiter, S.4
-
36
-
-
84870494675
-
Predictive computational toxicology to support drug safety assessment
-
Valerio, L. G. Jr. (2013). Predictive computational toxicology to support drug safety assessment. Methods Mol. Biol. 930, 341-354. doi: 10.1007/978-1-62703-059-5_15
-
(2013)
Methods Mol. Biol.
, vol.930
, pp. 341-354
-
-
Valerio, L.G.Jr.1
-
37
-
-
0003957032
-
Data mining practical machine learning tools and techniques
-
(Burlington, MA: Morgan Kaufmann Publishers).
-
Witten, I. H., Frank, E., and Hall, M. A. (2011). "Data mining practical machine learning tools and techniques," in Morgan Kaufmann Series in Data Management Systems, 3rd Edn., (Burlington, MA: Morgan Kaufmann Publishers).
-
(2011)
Morgan Kaufmann Series in Data Management Systems, 3rd Edn.
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
-
38
-
-
84925436995
-
New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling
-
Yang, C., Tarkhov, A., Marusczyk, J., Bienfait, B., Gasteiger, J., Kleinoeder, T., et al. (2015). New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J. Chem. Inf. Model. 55, 510-528. doi: 10.1021/ci500667v
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 510-528
-
-
Yang, C.1
Tarkhov, A.2
Marusczyk, J.3
Bienfait, B.4
Gasteiger, J.5
Kleinoeder, T.6
|