-
1
-
-
1642416884
-
Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
-
Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8. 10.1172/jci19081
-
(2004)
J Clin Invest
, vol.113
, Issue.4
, pp. 561-568
-
-
Shimada, T.1
Kakitani, M.2
Yamazaki, Y.3
Hasegawa, H.4
Takeuchi, Y.5
Fujita, T.6
Fukumoto, S.7
Tomizuka, K.8
Yamashita, T.9
-
2
-
-
68049085792
-
FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1
-
Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Ren Physiol. 2009;297(2):F282–91. 10.1152/ajprenal.90742.2008
-
(2009)
Am J Physiol Ren Physiol
, vol.297
, Issue.2
, pp. F282-F291
-
-
Gattineni, J.1
Bates, C.2
Twombley, K.3
Dwarakanath, V.4
Robinson, M.L.5
Goetz, R.6
Mohammadi, M.7
Baum, M.8
-
3
-
-
0013118819
-
The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency
-
Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem. 2003;278(11):9843–9. 10.1074/jbc.M210490200
-
(2003)
J Biol Chem
, vol.278
, Issue.11
, pp. 9843-9849
-
-
Bai, X.Y.1
Miao, D.2
Goltzman, D.3
Karaplis, A.C.4
-
4
-
-
2142746439
-
FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis
-
Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35. 10.1359/jbmr.0301264
-
(2004)
J Bone Miner Res
, vol.19
, Issue.3
, pp. 429-435
-
-
Shimada, T.1
Hasegawa, H.2
Yamazaki, Y.3
Muto, T.4
Hino, R.5
Takeuchi, Y.6
Fujita, T.7
Nakahara, K.8
Fukumoto, S.9
Yamashita, T.10
-
5
-
-
84950125639
-
Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects
-
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. 10.1152/physrev.00014.2015
-
(2016)
Physiol Rev
, vol.96
, Issue.1
, pp. 365-408
-
-
Christakos, S.1
Dhawan, P.2
Verstuyf, A.3
Verlinden, L.4
Carmeliet, G.5
-
6
-
-
70350223807
-
Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease
-
Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009;45(6):1161–8. 10.1016/j.bone.2009.08.008
-
(2009)
Bone
, vol.45
, Issue.6
, pp. 1161-1168
-
-
Pereira, R.C.1
Juppner, H.2
Azucena-Serrano, C.E.3
Yadin, O.4
Salusky, I.B.5
Wesseling-Perry, K.6
-
7
-
-
79957870135
-
Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease
-
Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8. 10.1038/ki.2011.47
-
(2011)
Kidney Int
, vol.79
, Issue.12
, pp. 1370-1378
-
-
Isakova, T.1
Wahl, P.2
Vargas, G.S.3
Gutierrez, O.M.4
Scialla, J.5
Xie, H.6
-
8
-
-
0344945402
-
Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers
-
Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003;64(6):2272–9. 10.1046/j.1523-1755.2003.00328.x
-
(2003)
Kidney Int
, vol.64
, Issue.6
, pp. 2272-2279
-
-
Larsson, T.1
Nisbeth, U.2
Ljunggren, O.3
Juppner, H.4
Jonsson, K.B.5
-
9
-
-
27744545673
-
Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease
-
Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15. 10.1681/asn.2005010052
-
(2005)
J Am Soc Nephrol
, vol.16
, Issue.7
, pp. 2205-2215
-
-
Gutierrez, O.1
Isakova, T.2
Rhee, E.3
Shah, A.4
Holmes, J.5
Collerone, G.6
-
10
-
-
84893560373
-
Disordered FGF23 and mineral metabolism in children with CKD
-
Portale AA, Wolf M, Juppner H, Messinger S, Kumar J, Wesseling-Perry K, et al. Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol. 2014;9(2):344–53. 10.2215/cjn.05840513
-
(2014)
Clin J Am Soc Nephrol
, vol.9
, Issue.2
, pp. 344-353
-
-
Portale, A.A.1
Wolf, M.2
Juppner, H.3
Messinger, S.4
Kumar, J.5
Wesseling-Perry, K.6
Schwartz, G.J.7
Furth, S.L.8
Warady, B.A.9
Salusky, I.B.10
-
11
-
-
80555148939
-
FGF23 induces left ventricular hypertrophy
-
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. 10.1172/jci46122
-
(2011)
J Clin Invest
, vol.121
, Issue.11
, pp. 4393-4408
-
-
Faul, C.1
Amaral, A.P.2
Oskouei, B.3
Hu, M.C.4
Sloan, A.5
Isakova, T.6
Gutiérrez, O.M.7
Aguillon-Prada, R.8
Lincoln, J.9
Hare, J.M.10
Mundel, P.11
Morales, A.12
Scialla, J.13
Fischer, M.14
Soliman, E.Z.15
Chen, J.16
Go, A.S.17
Rosas, S.E.18
Nessel, L.19
Townsend, R.R.20
Feldman, H.I.21
St. John Sutton, M.22
Ojo, A.23
Gadegbeku, C.24
di Marco, G.S.25
Reuter, S.26
Kentrup, D.27
Tiemann, K.28
Brand, M.29
Hill, J.A.30
Moe, O.W.31
Kuro-o, M.32
Kusek, J.W.33
Keane, M.G.34
Wolf, M.35
more..
-
12
-
-
66349097180
-
Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease
-
Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52. 10.1161/circulationaha.108.844506
-
(2009)
Circulation
, vol.119
, Issue.19
, pp. 2545-2552
-
-
Gutierrez, O.M.1
Januzzi, J.L.2
Isakova, T.3
Laliberte, K.4
Smith, K.5
Collerone, G.6
-
13
-
-
85040239950
-
FGF23 and left ventricular hypertrophy in children with CKD
-
Mitsnefes MM, Betoko A, Schneider MF, Salusky IB, Wolf MS, Juppner H, et al. FGF23 and left ventricular hypertrophy in children with CKD. Clin J Am Soc Nephrol. 2018;13(1):45–52. 10.2215/cjn.02110217
-
(2018)
Clin J Am Soc Nephrol
, vol.13
, Issue.1
, pp. 45-52
-
-
Mitsnefes, M.M.1
Betoko, A.2
Schneider, M.F.3
Salusky, I.B.4
Wolf, M.S.5
Juppner, H.6
-
14
-
-
84866127175
-
A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model
-
Dai B, David V, Martin A, Huang J, Li H, Jiao Y, et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012;7(9):e44161. 10.1371/journal.pone.0044161
-
(2012)
PLoS One
, vol.7
, Issue.9
-
-
Dai, B.1
David, V.2
Martin, A.3
Huang, J.4
Li, H.5
Jiao, Y.6
Gu, W.7
Quarles, L.D.8
-
15
-
-
85029719844
-
FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-beta autoinduction
-
Smith ER, Holt SG, Hewitson TD. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-beta autoinduction. Int J Biochem Cell Biol. 2017;92:63–78. 10.1016/j.biocel.2017.09.009
-
(2017)
Int J Biochem Cell Biol
, vol.92
, pp. 63-78
-
-
Smith, E.R.1
Holt, S.G.2
Hewitson, T.D.3
-
16
-
-
34548497123
-
Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study
-
Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18(9):2600–8. 10.1681/asn.2006080936
-
(2007)
J Am Soc Nephrol
, vol.18
, Issue.9
, pp. 2600-2608
-
-
Fliser, D.1
Kollerits, B.2
Neyer, U.3
Ankerst, D.P.4
Lhotta, K.5
Lingenhel, A.6
Ritz, E.7
Kronenberg, F.8
-
17
-
-
79958724181
-
Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease
-
Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9. 10.1001/jama.2011.826
-
(2011)
JAMA
, vol.305
, Issue.23
, pp. 2432-2439
-
-
Isakova, T.1
Xie, H.2
Yang, W.3
Xie, D.4
Anderson, A.H.5
Scialla, J.6
-
18
-
-
85006266405
-
Fibroblast growth factor 23 and risk of CKD progression in children
-
Portale AA, Wolf MS, Messinger S, Perwad F, Juppner H, Warady BA, et al. Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol. 2016;11(11):1989–98. 10.2215/cjn.02110216
-
(2016)
Clin J Am Soc Nephrol
, vol.11
, Issue.11
, pp. 1989-1998
-
-
Portale, A.A.1
Wolf, M.S.2
Messinger, S.3
Perwad, F.4
Juppner, H.5
Warady, B.A.6
-
19
-
-
84959894121
-
FGF23 signaling impairs neutrophil recruitment and host defense during CKD
-
Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962–74. 10.1172/jci83470
-
(2016)
J Clin Invest
, vol.126
, Issue.3
, pp. 962-974
-
-
Rossaint, J.1
Oehmichen, J.2
Van Aken, H.3
Reuter, S.4
Pavenstadt, H.J.5
Meersch, M.6
-
20
-
-
84954426824
-
Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study
-
Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J Am Soc Nephrol. 2016;27(1):227–37. 10.1681/asn.2014101009
-
(2016)
J Am Soc Nephrol
, vol.27
, Issue.1
, pp. 227-237
-
-
Chonchol, M.1
Greene, T.2
Zhang, Y.3
Hoofnagle, A.N.4
Cheung, A.K.5
-
21
-
-
49249104701
-
Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis
-
Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92. 10.1056/NEJMoa0706130
-
(2008)
N Engl J Med
, vol.359
, Issue.6
, pp. 584-592
-
-
Gutierrez, O.M.1
Mannstadt, M.2
Isakova, T.3
Rauh-Hain, J.A.4
Tamez, H.5
Shah, A.6
-
22
-
-
84864339688
-
The role of FGF23 in CKD--with or without Klotho
-
Komaba H, Fukagawa M. The role of FGF23 in CKD--with or without Klotho. Nat Rev Nephrol. 2012;8(8):484–90. 10.1038/nrneph.2012.116
-
(2012)
Nat Rev Nephrol
, vol.8
, Issue.8
, pp. 484-490
-
-
Komaba, H.1
Fukagawa, M.2
-
23
-
-
84898775593
-
Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis
-
Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5. 10.1073/pnas.1402218111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.15
, pp. 5520-5525
-
-
Tagliabracci, V.S.1
Engel, J.L.2
Wiley, S.E.3
Xiao, J.4
Gonzalez, D.J.5
Nidumanda Appaiah, H.6
Koller, A.7
Nizet, V.8
White, K.E.9
Dixon, J.E.10
-
24
-
-
84953377174
-
Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition
-
Yamamoto H, Ramos-Molina B, Lick AN, Prideaux M, Albornoz V, Bonewald L, et al. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone. 2016;84:120–30. 10.1016/j.bone.2015.12.055
-
(2016)
Bone
, vol.84
, pp. 120-130
-
-
Yamamoto, H.1
Ramos-Molina, B.2
Lick, A.N.3
Prideaux, M.4
Albornoz, V.5
Bonewald, L.6
Lindberg, I.7
-
25
-
-
84902250298
-
Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease
-
Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens. 2014;23(4):411–9. 10.1097/01.mnh.0000447020.74593.6f
-
(2014)
Curr Opin Nephrol Hypertens
, vol.23
, Issue.4
, pp. 411-419
-
-
Wolf, M.1
White, K.E.2
-
26
-
-
76149101238
-
Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active
-
Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, Wesseling-Perry K, et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab. 2010;95(2):578–85. 10.1210/jc.2009-1603
-
(2010)
J Clin Endocrinol Metab
, vol.95
, Issue.2
, pp. 578-585
-
-
Shimada, T.1
Urakawa, I.2
Isakova, T.3
Yamazaki, Y.4
Epstein, M.5
Wesseling-Perry, K.6
Wolf, M.7
Salusky, I.B.8
Jüppner, H.9
-
27
-
-
84866155050
-
Biological variability of plasma intact and C-terminal FGF23 measurements
-
Smith ER, Cai MM, McMahon LP, Holt SG. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 2012;97(9):3357–65. 10.1210/jc.2012-1811
-
(2012)
J Clin Endocrinol Metab
, vol.97
, Issue.9
, pp. 3357-3365
-
-
Smith, E.R.1
Cai, M.M.2
McMahon, L.P.3
Holt, S.G.4
-
28
-
-
19944433609
-
Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo
-
Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9. 10.1074/jbc.M408903200
-
(2005)
J Biol Chem
, vol.280
, Issue.4
, pp. 2543-2549
-
-
Saito, H.1
Maeda, A.2
Ohtomo, S.3
Hirata, M.4
Kusano, K.5
Kato, S.6
Ogata, E.7
Segawa, H.8
Miyamoto, K.I.9
Fukushima, N.10
-
29
-
-
33747719260
-
Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men
-
Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91(8):3144–9. 10.1210/jc.2006-0021
-
(2006)
J Clin Endocrinol Metab
, vol.91
, Issue.8
, pp. 3144-3149
-
-
Antoniucci, D.M.1
Yamashita, T.2
Portale, A.A.3
-
30
-
-
78650265254
-
Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism
-
Wesseling-Perry K, Pereira RC, Sahney S, Gales B, Wang HJ, Elashoff R, et al. Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int. 2011;79(1):112–9. 10.1038/ki.2010.352
-
(2011)
Kidney Int
, vol.79
, Issue.1
, pp. 112-119
-
-
Wesseling-Perry, K.1
Pereira, R.C.2
Sahney, S.3
Gales, B.4
Wang, H.J.5
Elashoff, R.6
Jüppner, H.7
Salusky, I.B.8
-
31
-
-
77957993384
-
PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop
-
Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Ren Physiol. 2010;299(4):F882–9. 10.1152/ajprenal.00360.2010
-
(2010)
Am J Physiol Ren Physiol
, vol.299
, Issue.4
, pp. F882-F889
-
-
Lavi-Moshayoff, V.1
Wasserman, G.2
Meir, T.3
Silver, J.4
Naveh-Many, T.5
-
32
-
-
84857067427
-
Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo
-
Lopez I, Rodriguez-Ortiz ME, Almaden Y, Guerrero F, de Oca AM, Pineda C, et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 2011;80(5):475–82. 10.1038/ki.2011.107
-
(2011)
Kidney Int
, vol.80
, Issue.5
, pp. 475-482
-
-
Lopez, I.1
Rodriguez-Ortiz, M.E.2
Almaden, Y.3
Guerrero, F.4
de Oca, A.M.5
Pineda, C.6
-
33
-
-
26844568409
-
Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism
-
Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Ren Physiol. 2005;289(5):F1088–95. 10.1152/ajprenal.00474.2004
-
(2005)
Am J Physiol Ren Physiol
, vol.289
, Issue.5
, pp. F1088-F1095
-
-
Shimada, T.1
Yamazaki, Y.2
Takahashi, M.3
Hasegawa, H.4
Urakawa, I.5
Oshima, T.6
Ono, K.7
Kakitani, M.8
Tomizuka, K.9
Fujita, T.10
Fukumoto, S.11
Yamashita, T.12
-
34
-
-
84925735151
-
Klotho and chronic kidney disease
-
Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63. 10.1159/000346778
-
(2013)
Contrib Nephrol
, vol.180
, pp. 47-63
-
-
Hu, M.C.1
Kuro-o, M.2
Moe, O.W.3
-
35
-
-
81755163635
-
Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice
-
Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):E1146–55. 10.1073/pnas.1110905108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.46
, pp. E1146-E1155
-
-
Farrow, E.G.1
Yu, X.2
Summers, L.J.3
Davis, S.I.4
Fleet, J.C.5
Allen, M.R.6
Robling, A.G.7
Stayrook, K.R.8
Jideonwo, V.9
Magers, M.J.10
Garringer, H.J.11
Vidal, R.12
Chan, R.J.13
Goodwin, C.B.14
Hui, S.L.15
Peacock, M.16
White, K.E.17
-
36
-
-
84892698159
-
Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice
-
Clinkenbeard EL, Farrow EG, Summers LJ, Cass TA, Roberts JL, Bayt CA, et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res. 2014;29(2):361–9. 10.1002/jbmr.2049
-
(2014)
J Bone Miner Res
, vol.29
, Issue.2
, pp. 361-369
-
-
Clinkenbeard, E.L.1
Farrow, E.G.2
Summers, L.J.3
Cass, T.A.4
Roberts, J.L.5
Bayt, C.A.6
Lahm, T.7
Albrecht, M.8
Allen, M.R.9
Peacock, M.10
White, K.E.11
-
37
-
-
84946130633
-
Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production
-
This study demonstrates the effects of iron deficiency and inflammation on FGF23 production and metabolism
-
• David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89(1):135–46. 10.1038/ki.2015.290 This study demonstrates the effects of iron deficiency and inflammation on FGF23 production and metabolism
-
(2016)
Kidney Int
, vol.89
, Issue.1
, pp. 135-146
-
-
David, V.1
Martin, A.2
Isakova, T.3
Spaulding, C.4
Qi, L.5
Ramirez, V.6
-
38
-
-
85006240147
-
Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice
-
Hanudel MR, Chua K, Rappaport M, Gabayan V, Valore E, Goltzman D, et al. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice. Am J Physiol Ren Physiol. 2016;311(6):F1369–f77. 10.1152/ajprenal.00281.2016
-
(2016)
Am J Physiol Ren Physiol
, vol.311
, Issue.6
, pp. F1177-F1369
-
-
Hanudel, M.R.1
Chua, K.2
Rappaport, M.3
Gabayan, V.4
Valore, E.5
Goltzman, D.6
Ganz, T.7
Nemeth, E.8
Salusky, I.B.9
-
39
-
-
38449123062
-
The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by three commercial assays
-
Durham BH, Joseph F, Bailey LM, Fraser WD. The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by three commercial assays. Ann Clin Biochem. 2007;44(Pt 5):463–6. 10.1258/000456307781646102
-
(2007)
Ann Clin Biochem
, vol.44
, pp. 463-466
-
-
Durham, B.H.1
Joseph, F.2
Bailey, L.M.3
Fraser, W.D.4
-
40
-
-
80655147297
-
Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans
-
Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9. 10.1210/jc.2011-1239
-
(2011)
J Clin Endocrinol Metab
, vol.96
, Issue.11
, pp. 3541-3549
-
-
Imel, E.A.1
Peacock, M.2
Gray, A.K.3
Padgett, L.R.4
Hui, S.L.5
Econs, M.J.6
-
41
-
-
84881241741
-
Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women
-
Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28(8):1793–803. 10.1002/jbmr.1923
-
(2013)
J Bone Miner Res
, vol.28
, Issue.8
, pp. 1793-1803
-
-
Wolf, M.1
Koch, T.A.2
Bregman, D.B.3
-
42
-
-
85011300266
-
Cord blood ferritin and fibroblast growth Factor-23 levels in neonates
-
Ali FN, Josefson J, Mendez AJ, Mestan K, Wolf M. Cord blood ferritin and fibroblast growth Factor-23 levels in neonates. J Clin Endocrinol Metab. 2016;101(4):1673–9. 10.1210/jc.2015-3709
-
(2016)
J Clin Endocrinol Metab
, vol.101
, Issue.4
, pp. 1673-1679
-
-
Ali, F.N.1
Josefson, J.2
Mendez, A.J.3
Mestan, K.4
Wolf, M.5
-
43
-
-
84960402261
-
Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women
-
Imel EA, Liu Z, McQueen AK, Acton D, Acton A, Padgett LR, et al. Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women. Bone. 2016;86:98–105. 10.1016/j.bone.2016.03.005
-
(2016)
Bone
, vol.86
, pp. 98-105
-
-
Imel, E.A.1
Liu, Z.2
McQueen, A.K.3
Acton, D.4
Acton, A.5
Padgett, L.R.6
-
44
-
-
85013902911
-
Low serum iron is associated with high serum intact FGF23 in elderly men: the Swedish MrOS study
-
Lewerin C, Ljunggren O, Nilsson-Ehle H, Karlsson MK, Herlitz H, Lorentzon M, et al. Low serum iron is associated with high serum intact FGF23 in elderly men: the Swedish MrOS study. Bone. 2017;98:1–8. 10.1016/j.bone.2017.02.005
-
(2017)
Bone
, vol.98
, pp. 1-8
-
-
Lewerin, C.1
Ljunggren, O.2
Nilsson-Ehle, H.3
Karlsson, M.K.4
Herlitz, H.5
Lorentzon, M.6
Ohlsson, C.7
Mellström, D.8
-
45
-
-
84979210013
-
The hypoxia-inducible factor-1alpha activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia
-
Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD, Collins MT, et al. The hypoxia-inducible factor-1alpha activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res. 2016;4:16011. 10.1038/boneres.2016.11
-
(2016)
Bone Res
, vol.4
, pp. 16011
-
-
Zhang, Q.1
Doucet, M.2
Tomlinson, R.E.3
Han, X.4
Quarles, L.D.5
Collins, M.T.6
Clemens, T.L.7
-
46
-
-
84959539535
-
Effects of acute kidney injury and chronic hypoxemia on fibroblast growth factor 23 levels in pediatric cardiac surgery patients
-
Hanudel MR, Wesseling-Perry K, Gales B, Ramos G, Campbell V, Ethridge K, et al. Effects of acute kidney injury and chronic hypoxemia on fibroblast growth factor 23 levels in pediatric cardiac surgery patients. Pediatr Nephrol. 2016;31(4):661–9. 10.1007/s00467-015-3257-5
-
(2016)
Pediatr Nephrol
, vol.31
, Issue.4
, pp. 661-669
-
-
Hanudel, M.R.1
Wesseling-Perry, K.2
Gales, B.3
Ramos, G.4
Campbell, V.5
Ethridge, K.6
-
47
-
-
14844299760
-
Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins
-
McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem. 2005;280(8):6561–9. 10.1074/jbc.M413248200
-
(2005)
J Biol Chem
, vol.280
, Issue.8
, pp. 6561-6569
-
-
McMahon, S.1
Grondin, F.2
McDonald, P.P.3
Richard, D.E.4
Dubois, C.M.5
-
48
-
-
38349194098
-
Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis
-
Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008;111(2):924–31. 10.1182/blood-2007-07-100677
-
(2008)
Blood
, vol.111
, Issue.2
, pp. 924-931
-
-
Silvestri, L.1
Pagani, A.2
Camaschella, C.3
-
49
-
-
84863759120
-
Fibroblast growth factor 23 and inflammation in CKD
-
Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, et al. Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol. 2012;7(7):1155–62. 10.2215/cjn.13281211
-
(2012)
Clin J Am Soc Nephrol
, vol.7
, Issue.7
, pp. 1155-1162
-
-
Munoz Mendoza, J.1
Isakova, T.2
Ricardo, A.C.3
Xie, H.4
Navaneethan, S.D.5
Anderson, A.H.6
Bazzano, L.A.7
Xie, D.8
Kretzler, M.9
Nessel, L.10
Hamm, L.L.11
Negrea, L.12
Leonard, M.B.13
Raj, D.14
Wolf, M.15
-
50
-
-
84926500864
-
Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults
-
Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10(3):e0122885. 10.1371/journal.pone.0122885
-
(2015)
PLoS One
, vol.10
, Issue.3
-
-
Hanks, L.J.1
Casazza, K.2
Judd, S.E.3
Jenny, N.S.4
Gutierrez, O.M.5
-
51
-
-
84908565099
-
Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli
-
Ito N, Wijenayaka AR, Prideaux M, Kogawa M, Ormsby RT, Evdokiou A, et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol Cell Endocrinol. 2015;399:208–18. 10.1016/j.mce.2014.10.007
-
(2015)
Mol Cell Endocrinol
, vol.399
, pp. 208-218
-
-
Ito, N.1
Wijenayaka, A.R.2
Prideaux, M.3
Kogawa, M.4
Ormsby, R.T.5
Evdokiou, A.6
Bonewald, L.F.7
Findlay, D.M.8
Atkins, G.J.9
-
52
-
-
85047762467
-
Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease
-
Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018;94:315–25. 10.1016/j.kint.2018.02.026
-
(2018)
Kidney Int
, vol.94
, pp. 315-325
-
-
Durlacher-Betzer, K.1
Hassan, A.2
Levi, R.3
Axelrod, J.4
Silver, J.5
Naveh-Many, T.6
-
53
-
-
0041672570
-
Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation
-
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8. 10.1182/blood-2003-03-0672
-
(2003)
Blood
, vol.102
, Issue.3
, pp. 783-788
-
-
Ganz, T.1
-
54
-
-
10844258104
-
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
-
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. 10.1126/science.1104742
-
(2004)
Science
, vol.306
, Issue.5704
, pp. 2090-2093
-
-
Nemeth, E.1
Tuttle, M.S.2
Powelson, J.3
Vaughn, M.B.4
Donovan, A.5
Ward, D.M.6
-
55
-
-
85032672522
-
Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow
-
Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. 2017;102(11):e427–e30. 10.3324/haematol.2017.167882
-
(2017)
Haematologica
, vol.102
, Issue.11
, pp. e427-e430
-
-
Clinkenbeard, E.L.1
Hanudel, M.R.2
Stayrook, K.R.3
Appaiah, H.N.4
Farrow, E.G.5
Cass, T.A.6
Summers, L.J.7
Ip, C.S.8
Hum, J.M.9
Thomas, J.C.10
Ivan, M.11
Richine, B.M.12
Chan, R.J.13
Clemens, T.L.14
Schipani, E.15
Sabbagh, Y.16
Xu, L.17
Srour, E.F.18
Alvarez, M.B.19
Kacena, M.A.20
Salusky, I.B.21
Ganz, T.22
Nemeth, E.23
White, K.E.24
more..
-
56
-
-
85043490240
-
Acute blood loss stimulates fibroblast growth factor 23 production
-
Rabadi S, Udo I, Leaf DE, Waikar SS, Christov M. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Ren Physiol. 2018;314(1):F132–f9. 10.1152/ajprenal.00081.2017
-
(2018)
Am J Physiol Ren Physiol
, vol.314
, Issue.1
, pp. F119-F132
-
-
Rabadi, S.1
Udo, I.2
Leaf, D.E.3
Waikar, S.S.4
Christov, M.5
-
57
-
-
85032445513
-
FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase
-
Flamme I, Ellinghaus P, Urrego D, Kruger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLoS One. 2017;12(10):e0186979. 10.1371/journal.pone.0186979
-
(2017)
PLoS One
, vol.12
, Issue.10
-
-
Flamme, I.1
Ellinghaus, P.2
Urrego, D.3
Kruger, T.4
-
58
-
-
85041044278
-
Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury
-
Toro L, Barrientos V, Leon P, Rojas M, Gonzalez M, Gonzalez-Ibanez A, et al. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int. 2018;93(5):1131–41. 10.1016/j.kint.2017.11.018
-
(2018)
Kidney Int
, vol.93
, Issue.5
, pp. 1131-1141
-
-
Toro, L.1
Barrientos, V.2
Leon, P.3
Rojas, M.4
Gonzalez, M.5
Gonzalez-Ibanez, A.6
-
59
-
-
85049218235
-
Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men
-
Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U, Pastor-Arroyo EM, et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 2018;470:1569–82. 10.1007/s00424-018-2171-7
-
(2018)
Pflugers Arch
, vol.470
, pp. 1569-1582
-
-
Daryadel, A.1
Bettoni, C.2
Haider, T.3
Imenez Silva, P.H.4
Schnitzbauer, U.5
Pastor-Arroyo, E.M.6
Wenger, R.H.7
Gassmann, M.8
Wagner, C.A.9
-
60
-
-
85075922042
-
Effects of erythropoietin on fibroblast growth factor 23 in mice and humans
-
Hanudel MR, Eisenga MF, Rappaport M, Chua K, Qiao B, Jung G, et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant. 2018. 10.1093/ndt/gfy189
-
(2018)
Nephrol Dial Transplant
-
-
Hanudel, M.R.1
Eisenga, M.F.2
Rappaport, M.3
Chua, K.4
Qiao, B.5
Jung, G.6
-
61
-
-
36048948342
-
Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease
-
Artunc F, Risler T. Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol Dial Transplant. 2007;22(10):2900–8. 10.1093/ndt/gfm316
-
(2007)
Nephrol Dial Transplant
, vol.22
, Issue.10
, pp. 2900-2908
-
-
Artunc, F.1
Risler, T.2
-
62
-
-
84898072899
-
FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis
-
This study demonstrates how FGF23 may inhibit aspects of erythropoiesis
-
• Coe LM, Madathil SV, Casu C, Lanske B, Rivella S, Sitara D. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J Biol Chem. 2014;289(14):9795–810. 10.1074/jbc.M113.527150 This study demonstrates how FGF23 may inhibit aspects of erythropoiesis
-
(2014)
J Biol Chem
, vol.289
, Issue.14
, pp. 9795-9810
-
-
Coe, L.M.1
Madathil, S.V.2
Casu, C.3
Lanske, B.4
Rivella, S.5
Sitara, D.6
-
63
-
-
85047533202
-
Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia
-
Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 2018. 10.1096/fj.201700667R
-
(2018)
The FASEB Journal
, vol.32
, Issue.7
, pp. 3752-3764
-
-
Agoro, R.1
Montagna, A.2
Goetz, R.3
Aligbe, O.4
Singh, G.5
Coe, L.M.6
Mohammadi, M.7
Rivella, S.8
Sitara, D.9
-
64
-
-
85033395412
-
Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study
-
Mehta R, Cai X, Hodakowski A, Lee J, Leonard M, Ricardo A, et al. Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study. Clin J Am Soc Nephrol. 2017;12(11):1795–803. 10.2215/cjn.03950417
-
(2017)
Clin J Am Soc Nephrol
, vol.12
, Issue.11
, pp. 1795-1803
-
-
Mehta, R.1
Cai, X.2
Hodakowski, A.3
Lee, J.4
Leonard, M.5
Ricardo, A.6
Chen, J.7
Hamm, L.8
Sondheimer, J.9
Dobre, M.10
David, V.11
Yang, W.12
Go, A.13
Kusek, J.W.14
Feldman, H.15
Wolf, M.16
Isakova, T.17
-
65
-
-
84979011044
-
Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease
-
Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90(5):985–96. 10.1016/j.kint.2016.05.019
-
(2016)
Kidney Int
, vol.90
, Issue.5
, pp. 985-996
-
-
Singh, S.1
Grabner, A.2
Yanucil, C.3
Schramm, K.4
Czaya, B.5
Krick, S.6
Czaja, M.J.7
Bartz, R.8
Abraham, R.9
di Marco, G.S.10
Brand, M.11
Wolf, M.12
Faul, C.13
|