-
1
-
-
68549133155
-
Learning from imbalanced data
-
June
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, June 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
2
-
-
84856964446
-
Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
-
June
-
V. López, A. Fernández, J. G. Moreno-Torres, and F. Herrera, "Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics," Expert Syst. Appl., vol. 39, no. 7, pp. 6585-6608, June 2012.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.7
, pp. 6585-6608
-
-
López, V.1
Fernández, A.2
Moreno-Torres, J.G.3
Herrera, F.4
-
3
-
-
27144549260
-
Special issue on learning from imbalanced data sets
-
June
-
N. V. Chawla, N. Japkowicz, and A. Kotcz, "Special issue on learning from imbalanced data sets," ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 1-6, June 2004.
-
(2004)
ACM SIGKDD Explorations Newslett.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
4
-
-
80054737651
-
The class imbalance problem in pattern classification and learning
-
Sept
-
R. Mollineda, R. Alejo, and J. Sotoca, "The class imbalance problem in pattern classification and learning," in Proc. II Congreso Espanõl de Informática, Sept. 2007, pp. 978-984.
-
(2007)
Proc. II Congreso Espanõl de Informática
, pp. 978-984
-
-
Mollineda, R.1
Alejo, R.2
Sotoca, J.3
-
5
-
-
84906788607
-
An overview of classification algorithms for imbalanced datasets
-
Apr.
-
V. Ganganwar, "An overview of classification algorithms for imbalanced datasets," Int. J. Emerging Technol. Adv. Eng., vol. 2, no. 4, pp. 42-47, Apr. 2012.
-
(2012)
Int. J. Emerging Technol. Adv. Eng.
, vol.2
, Issue.4
, pp. 42-47
-
-
Ganganwar, V.1
-
6
-
-
84878394942
-
Evolving diverse ensembles using genetic programming for classification with unbalanced data
-
May
-
U. Bhowan, M. Johnston, M. Zhang, and X. Yao, "Evolving diverse ensembles using genetic programming for classification with unbalanced data," IEEE Trans. Evol. Comput., vol. 17, no. 3, pp. 368-386, May 2013.
-
(2013)
IEEE Trans. Evol. Comput.
, vol.17
, Issue.3
, pp. 368-386
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
Yao, X.4
-
8
-
-
85009165593
-
Learning from class-imbalanced data: Review of methods and applications
-
May
-
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, "Learning from class-imbalanced data: Review of methods and applications," Expert Syst. Appl., vol. 73, pp. 220-239, May 2017.
-
(2017)
Expert Syst. Appl.
, vol.73
, pp. 220-239
-
-
Haixiang, G.1
Yijing, L.2
Shang, J.3
Mingyun, G.4
Yuanyue, H.5
Bing, G.6
-
9
-
-
84886615058
-
Prediction of preterm deliveries from EHG signals using machine learning
-
Oct
-
P. Fergus, P. Cheung, A. Hussain, D. Al-Jumeily, C. Dobbins, and S. Iram, "Prediction of preterm deliveries from EHG signals using machine learning," PloS One, vol. 8, no. 10, p. e77154, Oct. 2013.
-
(2013)
PloS One
, vol.8
, Issue.10
, pp. e77154
-
-
Fergus, P.1
Cheung, P.2
Hussain, A.3
Al-Jumeily, D.4
Dobbins, C.5
Iram, S.6
-
10
-
-
84997496950
-
Performance of synthetic minority oversampling technique on imbalanced breast cancer data
-
Mar
-
K. U. Rani, G. N. Ramadevi, and D. Lavanya, "Performance of synthetic minority oversampling technique on imbalanced breast cancer data," in Proc. IEEE 3rd Int. Conf. Computing Sustainable Global Development, Mar. 2016, pp. 1623-1627.
-
(2016)
Proc. IEEE 3rd Int. Conf. Computing Sustainable Global Development
, pp. 1623-1627
-
-
Rani, K.U.1
Ramadevi, G.N.2
Lavanya, D.3
-
11
-
-
85018509302
-
Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals
-
May
-
U. R. Acharya, V. K. Sudarshan, S. Q. Rong, Z. Tan, C. M. Lim, J. E. Koh, S. Nayak, and S. V. Bhandary, "Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals," Comput. Biol. Med., vol. 85, pp. 33-42, May 2017.
-
(2017)
Comput. Biol. Med.
, vol.85
, pp. 33-42
-
-
Acharya, U.R.1
Sudarshan, V.K.2
Rong, S.Q.3
Tan, Z.4
Lim, C.M.5
Koh, J.E.6
Nayak, S.7
Bhandary, S.V.8
-
12
-
-
84997541772
-
Classifying Alzheimer's disease, Lewy body dementia, and normal controls using 3D texture analysis in magnetic resonance images
-
Mar
-
K. Oppedal, K. Engan, T. Eftestol, M. Beyer, and D. Aarsland, "Classifying Alzheimer's disease, Lewy body dementia, and normal controls using 3D texture analysis in magnetic resonance images," Biomed. Signal Process. Control, vol. 33, pp. 19-29, Mar. 2017.
-
(2017)
Biomed. Signal Process. Control
, vol.33
, pp. 19-29
-
-
Oppedal, K.1
Engan, K.2
Eftestol, T.3
Beyer, M.4
Aarsland, D.5
-
13
-
-
84946407304
-
Joint use of over-and undersampling techniques and cross-validation for the development and assessment of prediction models
-
Nov.
-
R. Blagus and L. Lusa, "Joint use of over-and undersampling techniques and cross-validation for the development and assessment of prediction models," BMC Bioinf., vol. 16, no. 1, pp. 1-10, Nov. 2015.
-
(2015)
BMC Bioinf.
, vol.16
, Issue.1
, pp. 1-10
-
-
Blagus, R.1
Lusa, L.2
-
14
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
ACM June
-
G. E. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine learning training data," ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 20-29, June 2004.
-
(2004)
SIGKDD Explorations Newslett.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
15
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
June
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, pp. 321-357, June 2002.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
16
-
-
56349089205
-
Adasyn: Adaptive synthetic sampling approach for imbalanced learning
-
June
-
H. He, Y. Bai, E. A. Garcia, and S. Li, "Adasyn: Adaptive synthetic sampling approach for imbalanced learning," in Proc. IEEE Int. Joint Conf. Neural Networks, June 2008, pp. 1322-1328.
-
(2008)
Proc. IEEE Int. Joint Conf. Neural Networks
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.A.3
Li, S.4
-
17
-
-
27144501672
-
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
-
Aug
-
H. Han, W. Wang, and B. Mao, "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning," in Advances in Intelligent Computing, Aug. 2005, pp. 878-887.
-
(2005)
Advances in Intelligent Computing
, pp. 878-887
-
-
Han, H.1
Wang, W.2
Mao, B.3
-
18
-
-
67650694660
-
Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
-
Apr
-
C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, "Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem," in Advances in Knowledge Discovery and Data Mining, Apr. 2009, pp. 475-482.
-
(2009)
In Advances in Knowledge Discovery and Data Mining
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
19
-
-
0017024036
-
Two modifications of CNN
-
Nov.
-
I. Tomek, "Two modifications of CNN," IEEE Trans. Syst., Man, Cybern. (1971-1995), vol. 6, pp. 769-772, Nov. 1976.
-
(1976)
IEEE Trans. Syst., Man, Cybern. (1971-1995)
, vol.6
, pp. 769-772
-
-
Tomek, I.1
-
20
-
-
0015361129
-
Asymptotic properties of nearest neighbour rules using edited data
-
July
-
D. L. Wilson, "Asymptotic properties of nearest neighbour rules using edited data," IEEE Trans. Syst., Man, Cybern.(1971-1995), vol. 2, no. 3, pp. 408-421, July 1972.
-
(1972)
IEEE Trans. Syst., Man, Cybern.(1971-1995)
, vol.2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
22
-
-
27144540575
-
Class imbalances versus small disjuncts
-
June
-
T. Jo and N. Japkowicz, "Class imbalances versus small disjuncts," ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 40-49, June 2004.
-
(2004)
ACM SIGKDD Explorations Newslett.
, vol.6
, Issue.1
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
23
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
May
-
G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geissbuhler, "Learning from imbalanced data in surveillance of nosocomial infection," Artif. Intell. Med., vol. 37, no. 1, pp. 7-18, May 2006.
-
(2006)
Artif. Intell. Med.
, vol.37
, Issue.1
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
24
-
-
84891807032
-
MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning
-
Nov.
-
S. Barua, M. M. Islam, X. Yao, and K. Murase, "MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning," IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405-425, Nov. 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.2
, pp. 405-425
-
-
Barua, S.1
Islam, M.M.2
Yao, X.3
Murase, K.4
-
25
-
-
52949093937
-
Selective pre-processing of imbalanced data for improving classification performance
-
Sept
-
J. Stefanowski and S. Wilk, "Selective pre-processing of imbalanced data for improving classification performance," Lecture Notes Comput. Sci., vol. 5182, pp. 283-292, Sept. 2008.
-
(2008)
Lecture Notes Comput. Sci.
, vol.5182
, pp. 283-292
-
-
Stefanowski, J.1
Wilk, S.2
-
26
-
-
79956276876
-
Learning from imbalanced data in presence of noisy and borderline examples
-
New York, NY, USA: Springer, June
-
K. Napiera?a, J. Stefanowski, and S. Wilk, "Learning from imbalanced data in presence of noisy and borderline examples," in Rough Sets and Current Trends in Computing. New York, NY, USA: Springer, June 2010, pp. 158-167.
-
(2010)
Rough Sets and Current Trends in Computing
, pp. 158-167
-
-
Napieraa, K.1
Stefanowski, J.2
Wilk, S.3
-
27
-
-
0036522441
-
Complexity measures of supervised classification problems
-
Mar
-
T. K. Ho and M. Basu, "Complexity measures of supervised classification problems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 289-300, Mar. 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.3
, pp. 289-300
-
-
Ho, T.K.1
Basu, M.2
-
28
-
-
84993982815
-
Predicting breast cancer recurrence using machine learning techniques: A systematic
-
Dec.
-
P. H. Abreu, M. S. Santos, M. H. Abreu, B. Andrade, and D. C. Silva, "Predicting breast cancer recurrence using machine learning techniques: A systematic review," ACM Comput. Surv., vol. 49, no. 3, pp. 1-40, Dec. 2016.
-
(2016)
ACM Comput. Surv.
, vol.49
, Issue.3
, pp. 1-40
-
-
Abreu, P.H.1
Santos, M.S.2
Abreu, M.H.3
Andrade, B.4
Silva, D.C.5
-
30
-
-
79952750417
-
-
La Salle-Universitat Ramon Llull, Dec
-
A. Orriols-Puig, N. Macia, and T. K. Ho, Documentation for the Data Complexity Library in C++, vol. 196. La Salle-Universitat Ramon Llull, Dec. 2010, pp. 1-40.
-
(2010)
Documentation for the Data Complexity Library in C++ 196
, pp. 1-40
-
-
Orriols-Puig, A.1
MacIa, N.2
Ho, T.K.3
-
31
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Apr
-
J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, Apr. 1982.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
32
-
-
84962631241
-
Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases
-
Jan
-
O. Loyola-González, J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa, and M. Garciá-Borroto, "Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases," Neurocomputing, vol. 175, pp. 935-947, Jan. 2016.
-
(2016)
Neurocomputing
, vol.175
, pp. 935-947
-
-
Loyola-González, O.1
Martínez-Trinidad, J.F.2
Carrasco-Ochoa, J.A.3
Garciá-Borroto, M.4
-
33
-
-
84981484906
-
A selective dynamic sampling back-propagation approach for handling the two-class imbalance problem
-
July
-
R. Alejo, J. Monroy-de Jesús, J. H. Pacheco-Sánchez, E. López-González, and J. A. Antonio-Velázquez, "A selective dynamic sampling back-propagation approach for handling the two-class imbalance problem," Appl. Sci., vol. 6, no. 7, pp. 1-17, July 2016.
-
(2016)
Appl. Sci.
, vol.6
, Issue.7
, pp. 1-17
-
-
Alejo, R.1
Monroy-De Jesús, J.2
Pacheco-Sánchez, J.H.3
López-González, E.4
Antonio-Velázquez, J.A.5
-
34
-
-
84987968822
-
A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
-
Dec
-
W. A. Rivera and P. Xanthopoulos, "A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets," Expert Syst. Appl., vol. 66, pp. 124-135, Dec. 2016.
-
(2016)
Expert Syst. Appl.
, vol.66
, pp. 124-135
-
-
Rivera, W.A.1
Xanthopoulos, P.2
-
35
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
Sept
-
J. A. Saéz, B. Krawczyk, and M. Wózniak, "Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets," Pattern Recog., vol. 57, pp. 164-178, Sept. 2016.
-
(2016)
Pattern Recog.
, vol.57
, pp. 164-178
-
-
Saéz, J.A.1
Krawczyk, B.2
Wózniak, M.3
-
36
-
-
85017142343
-
Self-organizing map oversampling (SOMO) for imbalanced data set learning
-
Oct
-
G. Douzas and F. Bacao, "Self-organizing map oversampling (SOMO) for imbalanced data set learning," Expert Syst. Appl., vol. 82, pp. 40-52, Oct. 2017.
-
(2017)
Expert Syst. Appl.
, vol.82
, pp. 40-52
-
-
Douzas, G.1
Bacao, F.2
-
37
-
-
85008323075
-
Medical decision support system for extremely imbalanced datasets
-
Apr
-
S. Shilaskar, A. Ghatol, and P. Chatur, "Medical decision support system for extremely imbalanced datasets," Inf. Sci., vol. 384, pp. 205-219, Apr. 2017.
-
(2017)
Inf. Sci.
, vol.384
, pp. 205-219
-
-
Shilaskar, S.1
Ghatol, A.2
Chatur, P.3
-
38
-
-
84996799416
-
A SVM framework for fault detection of the braking system in a high speed train
-
Mar
-
J. Liu, Y. Li, and E. Zio, "A SVM framework for fault detection of the braking system in a high speed train," Mech. Syst. Signal Process., vol. 87, pp. 401-409, Mar. 2017.
-
(2017)
Mech. Syst. Signal Process.
, vol.87
, pp. 401-409
-
-
Liu, J.1
Li, Y.2
Zio, E.3
-
39
-
-
79957915328
-
Addressing data complexity for imbalanced data sets: Analysis of SMOTE-based oversampling and evolutionary undersampling
-
Oct.
-
J. Luengo, A. Fernández, S. Garciá, and F. Herrera, "Addressing data complexity for imbalanced data sets: Analysis of SMOTE-based oversampling and evolutionary undersampling," Soft Comput., vol. 15, no. 10, pp. 1909-1936, Oct. 2011.
-
(2011)
Soft Comput.
, vol.15
, Issue.10
, pp. 1909-1936
-
-
Luengo, J.1
Fernández, A.2
Garciá, S.3
Herrera, F.4
-
40
-
-
84883447718
-
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
-
Nov
-
V. López, A. Fernández, S. Garciá, V. Palade, and F. Herrera, "An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics," Inf. Sci., vol. 250, pp. 113-141, Nov. 2013.
-
(2013)
Inf. Sci.
, vol.250
, pp. 113-141
-
-
López, V.1
Fernández, A.2
Garciá, S.3
Palade, V.4
Herrera, F.5
-
41
-
-
84947934366
-
A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients
-
Dec
-
M. S. Santos, P. H. Abreu, P. J. Garciá-Laencina, A. Simao, and A. Carvalho, "A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients," J. Biomed. Inform., vol. 58, pp. 49-59, Dec. 2015.
-
(2015)
J. Biomed. Inform.
, vol.58
, pp. 49-59
-
-
Santos, M.S.1
Abreu, P.H.2
Garciá-Laencina, P.J.3
Simao, A.4
Carvalho, A.5
-
42
-
-
84972893020
-
A dendrite method for cluster analysis
-
June
-
T. Calínski and J. Harabasz, "A dendrite method for cluster analysis," Commun. Stat.-Theory Methods, vol. 3, no. 1, pp. 1-27, June 1974.
-
(1974)
Commun. Stat.-Theory Methods
, vol.3
, Issue.1
, pp. 1-27
-
-
Calínski, T.1
Harabasz, J.2
-
44
-
-
0003430544
-
-
New York, NY, USA: Wiley
-
L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. New York, NY, USA: Wiley, 2009.
-
(2009)
Finding Groups in Data: An Introduction to Cluster Analysis
, vol.344
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
45
-
-
84936791875
-
-
New York, NY, USA: Springer International Publishing, June
-
J. Stefanowski, Dealing with Data Difficulty Factors While Learning from Imbalanced Data. New York, NY, USA: Springer International Publishing, June 2016, pp. 333-363.
-
(2016)
Dealing with Data Difficulty Factors while Learning from Imbalanced Data
, pp. 333-363
-
-
Stefanowski, J.1
-
46
-
-
84876917722
-
Study on the impact of partition-induced dataset shift on k-fold cross-validation
-
June
-
J. G. Moreno-Torres, J. A. Saéz, and F. Herrera, "Study on the impact of partition-induced dataset shift on k-fold cross-validation," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1304-1312, June 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.8
, pp. 1304-1312
-
-
Moreno-Torres, J.G.1
Saéz, J.A.2
Herrera, F.3
-
47
-
-
85055277909
-
-
R package version 1.0.0, Feb. Accessed on: August 27 2018
-
I. Cordón, S. Garciá, A. Fernández, and F. Herrera, Imbalance: Preprocessing algorithms for imbalanced datasets, R package version 1.0.0, Feb. 2018. [Online]. Available: Https://cran.r-project.org/web/packages/imbalance. Accessed on: August 27, 2018.
-
(2018)
Imbalance: Preprocessing Algorithms for Imbalanced Datasets
-
-
Cordón, I.1
Garciá, S.2
Fernández, A.3
Herrera, F.4
|