메뉴 건너뛰기




Volumn 82, Issue , 2017, Pages 40-52

Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning

Author keywords

[No Author keywords available]

Indexed keywords

CONFORMAL MAPPING;

EID: 85017142343     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2017.03.073     Document Type: Article
Times cited : (157)

References (54)
  • 1
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional space
    • Aggarwal, C.C., Hinneburg, A., Keim, D.A., On the surprising behavior of distance metrics in high dimensional space. Database Theory – ICDT 2001 (2001), 420–434.
    • (2001) Database Theory – ICDT , vol.2001 , pp. 420-434
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.A.3
  • 2
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machine to imbalanced datasets
    • Akbani, R., Kwek, S., Japkowicz, N., Applying support vector machine to imbalanced datasets. Machine Learning: ECML 2004 (2004), 39–50.
    • (2004) Machine Learning: ECML , vol.2004 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 3
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE – Majority weighted minority oversampling technique for imbalanced data set learning
    • Barua, S., Islam, Md.M., Yao, X., Murase, K., MWMOTE – Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering 26:2 (2014), 405–425.
    • (2014) IEEE Transactions on Knowledge and Data Engineering , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.M.2    Yao, X.3    Murase, K.4
  • 8
    • 84862140885 scopus 로고    scopus 로고
    • DBSMOTE: Density-based synthetic minority over-sampling technique
    • Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., DBSMOTE: Density-based synthetic minority over-sampling technique. Applied Intelligence 36:3 (2012), 664–684.
    • (2012) Applied Intelligence , vol.36 , Issue.3 , pp. 664-684
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 11
    • 27144549260 scopus 로고    scopus 로고
    • Editorial : Special issue on learning from imbalanced data sets
    • Chawla, N.V., Japkowicz, N., Drive, P., Editorial : Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6:1 (2004), 1–6.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Drive, P.3
  • 16
    • 0026405773 scopus 로고
    • A rule-learning program in high energy physics event classification
    • Clearwater, S.H., Stern, E.G., A rule-learning program in high energy physics event classification. Computer Physics Communications 67:2 (1991), 159–182.
    • (1991) Computer Physics Communications , vol.67 , Issue.2 , pp. 159-182
    • Clearwater, S.H.1    Stern, E.G.2
  • 17
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • Cottrell, M., Fort, J.C., Pagès, G., Theoretical aspects of the SOM algorithm. Neurocomputing 21:1–3 (1998), 119–138.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pagès, G.3
  • 19
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Fernández, A., López, V., Galar, M., Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowledge-Based Systems 42 (2013), 97–110.
    • (2013) Knowledge-Based Systems , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Jesus, M.J.4    Herrera, F.5
  • 20
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H., Greedy function approximation: A gradient boosting machine. Annals of Statistics 29:5 (2001), 1189–1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 22
    • 53949100479 scopus 로고    scopus 로고
    • Principal manifolds for data visualization and dimension reduction
    • Springer
    • Gorban, A., Kegl, B., Wunsch, D., Zinovyen, A., Principal manifolds for data visualization and dimension reduction. 2008, Springer.
    • (2008)
    • Gorban, A.1    Kegl, B.2    Wunsch, D.3    Zinovyen, A.4
  • 23
    • 84962601050 scopus 로고    scopus 로고
    • Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data
    • Graves, S.J., Asner, G.P., Martin, R.E., Anderson, C.B., Colgan, M.S., Kalantari, L., et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sensing, 8(2), 2016.
    • (2016) Remote Sensing , vol.8 , Issue.2
    • Graves, S.J.1    Asner, G.P.2    Martin, R.E.3    Anderson, C.B.4    Colgan, M.S.5    Kalantari, L.6
  • 24
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost IM Ap- proach
    • Guo, H., Viktor, H., Learning from imbalanced data sets with boosting and data generation: The DataBoost IM Ap- proach. ACM SIGKDD Explorations Newsletter 6:1 (2004), 30–39.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.2
  • 25
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Han, H., Wang, W., Mao, B., Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. Advances in intelligent computing 17:12 (2005), 878–887.
    • (2005) Advances in intelligent computing , vol.17 , Issue.12 , pp. 878-887
    • Han, H.1    Wang, W.2    Mao, B.3
  • 26
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart, P., The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14 (1968), 515–516.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 515-516
    • Hart, P.1
  • 33
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T., Self-organized formation of topologically correct feature maps. Biological Cybernetics 43:1 (1982), 59–69.
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 35
    • 35348935140 scopus 로고    scopus 로고
    • Handling imbalanced datasets : A review
    • Kotsiantis, S., Kanellopoulos, D., Panayiotis, P., Handling imbalanced datasets : A review. Science 30:1 (2006), 25–36.
    • (2006) Science , vol.30 , Issue.1 , pp. 25-36
    • Kotsiantis, S.1    Kanellopoulos, D.2    Panayiotis, P.3
  • 36
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One sided selection
    • Kubat, M., Matwin, S., Addressing the curse of imbalanced training sets: One sided selection. ICML 97 (1997), 179–186.
    • (1997) ICML , vol.97 , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 37
    • 84947425690 scopus 로고    scopus 로고
    • Improving identification of difficult small classes by balancing class distribution
    • Laurikkala, J., Improving identification of difficult small classes by balancing class distribution. Artificial Intelligence in Medicine, 2001, 63–66.
    • (2001) Artificial Intelligence in Medicine , pp. 63-66
    • Laurikkala, J.1
  • 38
    • 85017108572 scopus 로고    scopus 로고
    • (). “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning”. CoRR abs/1609.06570.
    • Lemaitre, G., Nogueira, F., & Adidas, C. (2016). “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning”. CoRR abs/1609.06570.
    • (2016)
    • Lemaitre, G.1    Nogueira, F.2    Adidas, C.3
  • 40
    • 34249070931 scopus 로고    scopus 로고
    • Explicit magnification control of self-organizing maps for ‘forbidden’ data
    • Meŕenyi, E., Jain, A., Villmann, T., Explicit magnification control of self-organizing maps for ‘forbidden’ data. IEEE Transactions on Neural Networks 18:3 (2007), 786–797.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 786-797
    • Meŕenyi, E.1    Jain, A.2    Villmann, T.3
  • 41
    • 67650299342 scopus 로고    scopus 로고
    • Learning highly structured manifolds: Harnessing the power of SOMs. Springer
    • Merenyi, E., Tasdemir, K., Zhang, L., Learning highly structured manifolds: Harnessing the power of SOMs. Springer. Similarity-Based Clustering, LNAI 5400 (2009), 138–168.
    • (2009) Similarity-Based Clustering, LNAI , vol.5400 , pp. 138-168
    • Merenyi, E.1    Tasdemir, K.2    Zhang, L.3
  • 42
    • 84947569019 scopus 로고    scopus 로고
    • Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
    • Nekooeimehr, I., Lai-Yuen, S.K., Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications 46 (2016), 405–416.
    • (2016) Expert Systems with Applications , vol.46 , pp. 405-416
    • Nekooeimehr, I.1    Lai-Yuen, S.K.2
  • 44
    • 84941557105 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • Prati, R.C., Batista, G.E., Silva, D.F., Class imbalance revisited: A new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, 2014, 1–24.
    • (2014) Knowledge and Information Systems , pp. 1-24
    • Prati, R.C.1    Batista, G.E.2    Silva, D.F.3
  • 45
    • 0000289638 scopus 로고
    • Extending Kohonen's self-organizing mapping algorithm to learn ballistic movements
    • Ritter, H., Schulten, K., Extending Kohonen's self-organizing mapping algorithm to learn ballistic movements. Neural Computers, 1988, 393–406.
    • (1988) Neural Computers , pp. 393-406
    • Ritter, H.1    Schulten, K.2
  • 46
    • 69049102848 scopus 로고    scopus 로고
    • Cumulative distribution estimation with neural networks
    • Sarajedini, A., Chau, P.M., Cumulative distribution estimation with neural networks. WCNN’96, 1996, 876–880.
    • (1996) WCNN’96 , pp. 876-880
    • Sarajedini, A.1    Chau, P.M.2
  • 47
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognition 48 (2015), 1623–1637.
    • (2015) Pattern Recognition , vol.48 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3    Sun, H.4    Xu, B.5    Zhou, Y.6
  • 48
    • 84963595704 scopus 로고    scopus 로고
    • KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning
    • Tang, B., He, H., KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning. IEEE Congress on Evolutionary Computation (CEC), 2015.
    • (2015) IEEE Congress on Evolutionary Computation (CEC)
    • Tang, B.1    He, H.2
  • 49
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting, K.M., An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14:3 (2002), 659–665.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 51
    • 83955164226 scopus 로고    scopus 로고
    • New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
    • Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research 218:1 (2012), 211–229.
    • (2012) European Journal of Operational Research , vol.218 , Issue.1 , pp. 211-229
    • Verbeke, W.1    Dejaeger, K.2    Martens, D.3    Hur, J.4    Baesens, B.5
  • 52
    • 84926617955 scopus 로고    scopus 로고
    • Resampling-based ensemble methods for online class imbalance learning
    • Wang, S., Minku, L.L., Yao, X., Resampling-based ensemble methods for online class imbalance learning. IEEE Trans. Knowledge Data Eng. 27:5 (2015), 1356–1368.
    • (2015) IEEE Trans. Knowledge Data Eng. , vol.27 , Issue.5 , pp. 1356-1368
    • Wang, S.1    Minku, L.L.2    Yao, X.3
  • 53
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson, D.L., Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics 2:3 (1972), 408–421.
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.