-
1
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional space
-
Aggarwal, C.C., Hinneburg, A., Keim, D.A., On the surprising behavior of distance metrics in high dimensional space. Database Theory – ICDT 2001 (2001), 420–434.
-
(2001)
Database Theory – ICDT
, vol.2001
, pp. 420-434
-
-
Aggarwal, C.C.1
Hinneburg, A.2
Keim, D.A.3
-
2
-
-
22944452794
-
Applying support vector machine to imbalanced datasets
-
Akbani, R., Kwek, S., Japkowicz, N., Applying support vector machine to imbalanced datasets. Machine Learning: ECML 2004 (2004), 39–50.
-
(2004)
Machine Learning: ECML
, vol.2004
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
3
-
-
84891807032
-
MWMOTE – Majority weighted minority oversampling technique for imbalanced data set learning
-
Barua, S., Islam, Md.M., Yao, X., Murase, K., MWMOTE – Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering 26:2 (2014), 405–425.
-
(2014)
IEEE Transactions on Knowledge and Data Engineering
, vol.26
, Issue.2
, pp. 405-425
-
-
Barua, S.1
Islam, M.M.2
Yao, X.3
Murase, K.4
-
4
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter – Special Issue on Learning from Imbalanced Datasets 6:1 (2004), 20–29.
-
(2004)
ACM SIGKDD Explorations Newsletter – Special Issue on Learning from Imbalanced Datasets
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
6
-
-
84947205653
-
When is ‘nearest Neighbor’ meaningful?
-
Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U., When is ‘nearest Neighbor’ meaningful?. Database theory—ICDT’99, 1999, 217–235.
-
(1999)
Database theory—ICDT’99
, pp. 217-235
-
-
Beyer, K.S.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
7
-
-
67650694660
-
Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
-
Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2009, 475–482.
-
(2009)
Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
8
-
-
84862140885
-
DBSMOTE: Density-based synthetic minority over-sampling technique
-
Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., DBSMOTE: Density-based synthetic minority over-sampling technique. Applied Intelligence 36:3 (2012), 664–684.
-
(2012)
Applied Intelligence
, vol.36
, Issue.3
, pp. 664-684
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
10
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16 (2002), 321–357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
11
-
-
27144549260
-
Editorial : Special issue on learning from imbalanced data sets
-
Chawla, N.V., Japkowicz, N., Drive, P., Editorial : Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6:1 (2004), 1–6.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Drive, P.3
-
12
-
-
84863235930
-
Workshop learning from imbalanced data sets II
-
Chawla, N.V., Japkowicz, N., Kolcz, A., Workshop learning from imbalanced data sets II. Proceedings of the international conference machine learning, 2003.
-
(2003)
Proceedings of the international conference machine learning
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
13
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W., SMOTEBoost: Improving prediction of the minority class in boosting. Proceedings of the seventh European conference on principles and practice of knowledge discovery in databases, 2003, 107–119.
-
(2003)
Proceedings of the seventh European conference on principles and practice of knowledge discovery in databases
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
14
-
-
67049119859
-
Start globally, optimize locally, predict globally: Improving performance on imbalanced data
-
Cieslak, D.A., Chawla, N.V., Start globally, optimize locally, predict globally: Improving performance on imbalanced data. Proceedings – IEEE international conference on data mining, ICDM, 2008, 143–152.
-
(2008)
Proceedings – IEEE international conference on data mining, ICDM
, pp. 143-152
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
15
-
-
33751105239
-
Combating imbalance in network intrusion datasets
-
Cieslak, D.A., Chawla, N.V., Striegel, A., Combating imbalance in network intrusion datasets. IEEE International conference on granular computing, 2006, 732–737.
-
(2006)
IEEE International conference on granular computing
, pp. 732-737
-
-
Cieslak, D.A.1
Chawla, N.V.2
Striegel, A.3
-
16
-
-
0026405773
-
A rule-learning program in high energy physics event classification
-
Clearwater, S.H., Stern, E.G., A rule-learning program in high energy physics event classification. Computer Physics Communications 67:2 (1991), 159–182.
-
(1991)
Computer Physics Communications
, vol.67
, Issue.2
, pp. 159-182
-
-
Clearwater, S.H.1
Stern, E.G.2
-
17
-
-
0345404393
-
Theoretical aspects of the SOM algorithm
-
Cottrell, M., Fort, J.C., Pagès, G., Theoretical aspects of the SOM algorithm. Neurocomputing 21:1–3 (1998), 119–138.
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 119-138
-
-
Cottrell, M.1
Fort, J.C.2
Pagès, G.3
-
19
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
-
Fernández, A., López, V., Galar, M., Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowledge-Based Systems 42 (2013), 97–110.
-
(2013)
Knowledge-Based Systems
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
Jesus, M.J.4
Herrera, F.5
-
20
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J.H., Greedy function approximation: A gradient boosting machine. Annals of Statistics 29:5 (2001), 1189–1232.
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
21
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging-, Boosting-, and Hybrid-based approaches
-
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: Bagging-, Boosting-, and Hybrid-based approaches. IEEE Transactions on Systems, Man and Cybernetics Part C 42:4 (2012), 463–484.
-
(2012)
IEEE Transactions on Systems, Man and Cybernetics Part C
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
22
-
-
53949100479
-
Principal manifolds for data visualization and dimension reduction
-
Springer
-
Gorban, A., Kegl, B., Wunsch, D., Zinovyen, A., Principal manifolds for data visualization and dimension reduction. 2008, Springer.
-
(2008)
-
-
Gorban, A.1
Kegl, B.2
Wunsch, D.3
Zinovyen, A.4
-
23
-
-
84962601050
-
Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data
-
Graves, S.J., Asner, G.P., Martin, R.E., Anderson, C.B., Colgan, M.S., Kalantari, L., et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sensing, 8(2), 2016.
-
(2016)
Remote Sensing
, vol.8
, Issue.2
-
-
Graves, S.J.1
Asner, G.P.2
Martin, R.E.3
Anderson, C.B.4
Colgan, M.S.5
Kalantari, L.6
-
24
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost IM Ap- proach
-
Guo, H., Viktor, H., Learning from imbalanced data sets with boosting and data generation: The DataBoost IM Ap- proach. ACM SIGKDD Explorations Newsletter 6:1 (2004), 30–39.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.2
-
25
-
-
27144501672
-
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
-
Han, H., Wang, W., Mao, B., Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. Advances in intelligent computing 17:12 (2005), 878–887.
-
(2005)
Advances in intelligent computing
, vol.17
, Issue.12
, pp. 878-887
-
-
Han, H.1
Wang, W.2
Mao, B.3
-
26
-
-
84931162639
-
The condensed nearest neighbor rule
-
Hart, P., The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14 (1968), 515–516.
-
(1968)
IEEE Trans. Inform. Theory
, vol.14
, pp. 515-516
-
-
Hart, P.1
-
27
-
-
56349089205
-
ADASYN: Adaptive synthetic sampling approach for imbalanced learning
-
(pp. 1322–1328)
-
He, H., Bai, Y., Garcia, E., Li, S., ADASYN: Adaptive synthetic sampling approach for imbalanced learning. IEEE international joint conference on neural networks, 2008. IJCNN 2008. (IEEE world congress on computational intelligence), 2008, 1322–1328 (pp. 1322–1328).
-
(2008)
IEEE international joint conference on neural networks, 2008. IJCNN 2008. (IEEE world congress on computational intelligence)
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.3
Li, S.4
-
28
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E.A., Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21:9 (2009), 1263–1284.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
31
-
-
0002087501
-
Methods for interpreting a self-organized map in data analysis
-
Kaski, S., Kohonen, T., Methods for interpreting a self-organized map in data analysis. ESANN ‘98, 6th European symposium on artificial neural neural networks, 22–24 April 1998, Brussels, Belgium (Brussels: D-Facto), 1998, 185–190.
-
(1998)
ESANN ‘98, 6th European symposium on artificial neural neural networks, 22–24 April 1998, Brussels, Belgium (Brussels: D-Facto)
, pp. 185-190
-
-
Kaski, S.1
Kohonen, T.2
-
33
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen, T., Self-organized formation of topologically correct feature maps. Biological Cybernetics 43:1 (1982), 59–69.
-
(1982)
Biological Cybernetics
, vol.43
, Issue.1
, pp. 59-69
-
-
Kohonen, T.1
-
35
-
-
35348935140
-
Handling imbalanced datasets : A review
-
Kotsiantis, S., Kanellopoulos, D., Panayiotis, P., Handling imbalanced datasets : A review. Science 30:1 (2006), 25–36.
-
(2006)
Science
, vol.30
, Issue.1
, pp. 25-36
-
-
Kotsiantis, S.1
Kanellopoulos, D.2
Panayiotis, P.3
-
36
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One sided selection
-
Kubat, M., Matwin, S., Addressing the curse of imbalanced training sets: One sided selection. ICML 97 (1997), 179–186.
-
(1997)
ICML
, vol.97
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
37
-
-
84947425690
-
Improving identification of difficult small classes by balancing class distribution
-
Laurikkala, J., Improving identification of difficult small classes by balancing class distribution. Artificial Intelligence in Medicine, 2001, 63–66.
-
(2001)
Artificial Intelligence in Medicine
, pp. 63-66
-
-
Laurikkala, J.1
-
38
-
-
85017108572
-
-
(). “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning”. CoRR abs/1609.06570.
-
Lemaitre, G., Nogueira, F., & Adidas, C. (2016). “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning”. CoRR abs/1609.06570.
-
(2016)
-
-
Lemaitre, G.1
Nogueira, F.2
Adidas, C.3
-
40
-
-
34249070931
-
Explicit magnification control of self-organizing maps for ‘forbidden’ data
-
Meŕenyi, E., Jain, A., Villmann, T., Explicit magnification control of self-organizing maps for ‘forbidden’ data. IEEE Transactions on Neural Networks 18:3 (2007), 786–797.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.3
, pp. 786-797
-
-
Meŕenyi, E.1
Jain, A.2
Villmann, T.3
-
41
-
-
67650299342
-
Learning highly structured manifolds: Harnessing the power of SOMs. Springer
-
Merenyi, E., Tasdemir, K., Zhang, L., Learning highly structured manifolds: Harnessing the power of SOMs. Springer. Similarity-Based Clustering, LNAI 5400 (2009), 138–168.
-
(2009)
Similarity-Based Clustering, LNAI
, vol.5400
, pp. 138-168
-
-
Merenyi, E.1
Tasdemir, K.2
Zhang, L.3
-
42
-
-
84947569019
-
Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
-
Nekooeimehr, I., Lai-Yuen, S.K., Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications 46 (2016), 405–416.
-
(2016)
Expert Systems with Applications
, vol.46
, pp. 405-416
-
-
Nekooeimehr, I.1
Lai-Yuen, S.K.2
-
43
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825–2830.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
44
-
-
84941557105
-
Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
-
Prati, R.C., Batista, G.E., Silva, D.F., Class imbalance revisited: A new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, 2014, 1–24.
-
(2014)
Knowledge and Information Systems
, pp. 1-24
-
-
Prati, R.C.1
Batista, G.E.2
Silva, D.F.3
-
45
-
-
0000289638
-
Extending Kohonen's self-organizing mapping algorithm to learn ballistic movements
-
Ritter, H., Schulten, K., Extending Kohonen's self-organizing mapping algorithm to learn ballistic movements. Neural Computers, 1988, 393–406.
-
(1988)
Neural Computers
, pp. 393-406
-
-
Ritter, H.1
Schulten, K.2
-
46
-
-
69049102848
-
Cumulative distribution estimation with neural networks
-
Sarajedini, A., Chau, P.M., Cumulative distribution estimation with neural networks. WCNN’96, 1996, 876–880.
-
(1996)
WCNN’96
, pp. 876-880
-
-
Sarajedini, A.1
Chau, P.M.2
-
47
-
-
84921817000
-
A novel ensemble method for classifying imbalanced data
-
Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognition 48 (2015), 1623–1637.
-
(2015)
Pattern Recognition
, vol.48
, pp. 1623-1637
-
-
Sun, Z.1
Song, Q.2
Zhu, X.3
Sun, H.4
Xu, B.5
Zhou, Y.6
-
48
-
-
84963595704
-
KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning
-
Tang, B., He, H., KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning. IEEE Congress on Evolutionary Computation (CEC), 2015.
-
(2015)
IEEE Congress on Evolutionary Computation (CEC)
-
-
Tang, B.1
He, H.2
-
49
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
Ting, K.M., An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14:3 (2002), 659–665.
-
(2002)
IEEE Transactions on Knowledge and Data Engineering
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
51
-
-
83955164226
-
New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
-
Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research 218:1 (2012), 211–229.
-
(2012)
European Journal of Operational Research
, vol.218
, Issue.1
, pp. 211-229
-
-
Verbeke, W.1
Dejaeger, K.2
Martens, D.3
Hur, J.4
Baesens, B.5
-
52
-
-
84926617955
-
Resampling-based ensemble methods for online class imbalance learning
-
Wang, S., Minku, L.L., Yao, X., Resampling-based ensemble methods for online class imbalance learning. IEEE Trans. Knowledge Data Eng. 27:5 (2015), 1356–1368.
-
(2015)
IEEE Trans. Knowledge Data Eng.
, vol.27
, Issue.5
, pp. 1356-1368
-
-
Wang, S.1
Minku, L.L.2
Yao, X.3
-
53
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
Wilson, D.L., Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics 2:3 (1972), 408–421.
-
(1972)
IEEE Transactions on Systems, Man and Cybernetics
, vol.2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
54
-
-
39749147033
-
Protein classification with imbalanced data
-
Zhao, X.M., Li, X., Chen, L., Aihara, K., Protein classification with imbalanced data. Proteins: Structure, Function and Genetics 70:4 (2008), 1125–1132.
-
(2008)
Proteins: Structure, Function and Genetics
, vol.70
, Issue.4
, pp. 1125-1132
-
-
Zhao, X.M.1
Li, X.2
Chen, L.3
Aihara, K.4
|