메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages 49-59

A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients

Author keywords

Clustering; Hepatocellular Carcinoma (HCC); K means; Oversampling; SMOTE; Survival prediction

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; COMPLEX NETWORKS; DATA MINING; DECISION MAKING; DISEASES; FORECASTING; LEARNING SYSTEMS;

EID: 84947934366     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.09.012     Document Type: Article
Times cited : (171)

References (47)
  • 2
    • 84948002655 scopus 로고    scopus 로고
    • W.H. Organization, Cancer fact sheet, 2014.http://www.who.int/mediacentre/factsheets/fs297.
    • (2014)
  • 3
    • 84858658381 scopus 로고    scopus 로고
    • European association for the study of the liver, European organisation for research and treatment of cancer
    • Anon. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma
    • Anon., European association for the study of the liver, European organisation for research and treatment of cancer, EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma, J. Hepatol. 56 (4) (2012) 908-943.
    • (2012) J. Hepatol. , vol.56 , Issue.4 , pp. 908-943
  • 4
    • 34247562185 scopus 로고    scopus 로고
    • Rising costs and hospital admissions for hepatocellular carcinoma in portugal (1993-2005)
    • Marinho R.T., Giria J., Moura M.C. Rising costs and hospital admissions for hepatocellular carcinoma in portugal (1993-2005). World J. Gastroenterol. 2007, 13(10):1522-1527.
    • (2007) World J. Gastroenterol. , vol.13 , Issue.10 , pp. 1522-1527
    • Marinho, R.T.1    Giria, J.2    Moura, M.C.3
  • 5
    • 84948002656 scopus 로고    scopus 로고
    • Cancro do fígado pode aumentar 70 por cento até
    • L.P.C. Cancro, Cancro do fígado pode aumentar 70 por cento até, 2015. http://www.ligacontracancro.pt/noticias/detalhes.php?id=115.
    • (2015)
    • Cancro, L.P.C.1
  • 7
    • 69249220244 scopus 로고    scopus 로고
    • Toward breast cancer survivability prediction models through improving training space
    • Thongkam J., Xu G., Zhang Y., Huang F. Toward breast cancer survivability prediction models through improving training space. Expert Syst. Appl. 2009, 36(10):12200-12209.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12200-12209
    • Thongkam, J.1    Xu, G.2    Zhang, Y.3    Huang, F.4
  • 11
    • 0032022729 scopus 로고    scopus 로고
    • Neural-network design for small training sets of high dimension
    • Yuan J., Fine T. Neural-network design for small training sets of high dimension. IEEE Trans. Neural Netw. 1998, 9(2):266-280.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.2 , pp. 266-280
    • Yuan, J.1    Fine, T.2
  • 12
    • 77956245661 scopus 로고    scopus 로고
    • Extreme data mining: Interference from small datasets
    • Andonie R. Extreme data mining: Interference from small datasets. Int. J. Comput. Commun. Control 2010, 5(3):280-291.
    • (2010) Int. J. Comput. Commun. Control , vol.5 , Issue.3 , pp. 280-291
    • Andonie, R.1
  • 13
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell F., Lee K., Mark D. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15(4):361-387.
    • (1996) Stat. Med. , vol.15 , Issue.4 , pp. 361-387
    • Harrell, F.1    Lee, K.2    Mark, D.3
  • 17
    • 84859212951 scopus 로고    scopus 로고
    • Hepatocellular carcinoma
    • Forner A., Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet 2012, 379(9822):1245-1255.
    • (2012) Lancet , vol.379 , Issue.9822 , pp. 1245-1255
    • Forner, A.1    Llovet, J.M.2    Bruix, J.3
  • 18
    • 14944361012 scopus 로고    scopus 로고
    • Assessment of the prognosis of cirrhosis: childpugh versus meld
    • Durand F., Valla D. Assessment of the prognosis of cirrhosis: childpugh versus meld. J. Hepatol. 2005, 42:S100-S107.
    • (2005) J. Hepatol. , vol.42 , pp. S100-S107
    • Durand, F.1    Valla, D.2
  • 19
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Informat. 2006, 2:59-78.
    • (2006) Cancer Informat. , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 20
    • 79954475872 scopus 로고    scopus 로고
    • Founding of database for cirrhotic patients for early detection of hepatocellular carcinoma
    • Wasyluk H.A., Cianciara J., Bobrowski L., Drapato A. Founding of database for cirrhotic patients for early detection of hepatocellular carcinoma. Hepatology 2010, 6(3):13-16.
    • (2010) Hepatology , vol.6 , Issue.3 , pp. 13-16
    • Wasyluk, H.A.1    Cianciara, J.2    Bobrowski, L.3    Drapato, A.4
  • 21
    • 84855315952 scopus 로고    scopus 로고
    • Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network
    • Ho W.-H., Lee K.-T., Chen H.-Y., Ho T.-W., Chiu H.-C. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PLoS ONE 2012, 7(1):e29179.
    • (2012) PLoS ONE , vol.7 , Issue.1
    • Ho, W.-H.1    Lee, K.-T.2    Chen, H.-Y.3    Ho, T.-W.4    Chiu, H.-C.5
  • 22
    • 84878340736 scopus 로고    scopus 로고
    • Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network
    • 201976-10
    • H.C. Chiu, T.W. Ho, L.K. T., H.Y. Chen, W.H. Ho, Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network, Sci. World J. 2013 (2013) 201976-10.
    • (2013) Sci. World J. , Issue.2013
    • Chiu, H.C.1    Ho, T.W.L.K.T.2    Chen, H.Y.3    Ho, W.H.4
  • 23
    • 84860356620 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery
    • Shi H.-Y., Lee K.-T., Lee H.-H., Ho W.-H., Sun D.-P., Wang J.-J., Chiu C.-C. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE 2012, 7(4):e35781.
    • (2012) PLoS ONE , vol.7 , Issue.4
    • Shi, H.-Y.1    Lee, K.-T.2    Lee, H.-H.3    Ho, W.-H.4    Sun, D.-P.5    Wang, J.-J.6    Chiu, C.-C.7
  • 26
    • 61849150502 scopus 로고    scopus 로고
    • K nearest neighbours with mutual information for simultaneous classification and missing data imputation
    • García-Laencina P.J., Sancho-Gómez J.-L., Figueiras-Vidal A.R., Verleysen M. K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputing 2009, 72(7-9):1483-1493.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1483-1493
    • García-Laencina, P.J.1    Sancho-Gómez, J.-L.2    Figueiras-Vidal, A.R.3    Verleysen, M.4
  • 28
    • 84923379438 scopus 로고    scopus 로고
    • Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
    • García-Laencina P.J., Abreu P.H., Abreu M.H., Afonso N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput. Biol. Med. 2015, 59:125-133.
    • (2015) Comput. Biol. Med. , vol.59 , pp. 125-133
    • García-Laencina, P.J.1    Abreu, P.H.2    Abreu, M.H.3    Afonso, N.4
  • 29
    • 0032794882 scopus 로고    scopus 로고
    • Methods for handling missing values in clinical trials
    • Little R.J.A. Methods for handling missing values in clinical trials. J. Rheumatol. 1999, 26(8):1654-1656.
    • (1999) J. Rheumatol. , vol.26 , Issue.8 , pp. 1654-1656
    • Little, R.J.A.1
  • 32
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista G.E., Monard M.C. An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 2003, 17:519-533.
    • (2003) Appl. Artif. Intell. , vol.17 , pp. 519-533
    • Batista, G.E.1    Monard, M.C.2
  • 35
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain A.K. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 2010, 31(8):651-666.
    • (2010) Pattern Recogn. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 36
    • 84858781875 scopus 로고    scopus 로고
    • Data clustering method for discovering clusters in spatial cancer databases
    • Chauhan R., Kaur H., Alam M. Data clustering method for discovering clusters in spatial cancer databases. Int. J. Comput. Appl. 2010, 10(6):9-14.
    • (2010) Int. J. Comput. Appl. , vol.10 , Issue.6 , pp. 9-14
    • Chauhan, R.1    Kaur, H.2    Alam, M.3
  • 37
    • 84892573012 scopus 로고    scopus 로고
    • An integrated clustering and classification approach for the analysis of tumor patient data
    • Springer, Berlin Heidelberg, R. Moreno-Daz, F. Pichler, A. Quesada-Arencibia (Eds.) Computer Aided Systems Theory - EUROCAST 2013
    • Winkler S.M., Affenzeller M., Stekel H. An integrated clustering and classification approach for the analysis of tumor patient data. Lecture Notes in Computer Science 2013, vol. 8111:388-395. Springer, Berlin Heidelberg. R. Moreno-Daz, F. Pichler, A. Quesada-Arencibia (Eds.).
    • (2013) Lecture Notes in Computer Science , vol.8111 , pp. 388-395
    • Winkler, S.M.1    Affenzeller, M.2    Stekel, H.3
  • 38
  • 41
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • Dudoit S., Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19(9):1090-1099.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 43
    • 84896778790 scopus 로고    scopus 로고
    • Exploring the diversity in cluster ensemble generation: random sampling and random projection
    • Yang F., Li X., Li Q., Li T. Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst. Appl. 2014, 41(10):4844-4866.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.10 , pp. 4844-4866
    • Yang, F.1    Li, X.2    Li, Q.3    Li, T.4
  • 45
    • 0003633237 scopus 로고
    • Stratified random sampling
    • Springer, Berlin, Heidelberg
    • de Vries P.G. Stratified random sampling. Sampling Theory for Forest Inventory 1986, 31-55. Springer, Berlin, Heidelberg.
    • (1986) Sampling Theory for Forest Inventory , pp. 31-55
    • de Vries, P.G.1
  • 46
    • 14644390912 scopus 로고    scopus 로고
    • Using auc and accuracy in evaluating learning algorithms
    • Huang J. Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17(3):290-310.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 290-310
    • Huang, J.1
  • 47
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Machine Learning Res. 2006, 7:1-30.
    • (2006) J. Machine Learning Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.