-
2
-
-
84948002655
-
-
W.H. Organization, Cancer fact sheet, 2014.http://www.who.int/mediacentre/factsheets/fs297.
-
(2014)
-
-
-
3
-
-
84858658381
-
European association for the study of the liver, European organisation for research and treatment of cancer
-
Anon. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma
-
Anon., European association for the study of the liver, European organisation for research and treatment of cancer, EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma, J. Hepatol. 56 (4) (2012) 908-943.
-
(2012)
J. Hepatol.
, vol.56
, Issue.4
, pp. 908-943
-
-
-
4
-
-
34247562185
-
Rising costs and hospital admissions for hepatocellular carcinoma in portugal (1993-2005)
-
Marinho R.T., Giria J., Moura M.C. Rising costs and hospital admissions for hepatocellular carcinoma in portugal (1993-2005). World J. Gastroenterol. 2007, 13(10):1522-1527.
-
(2007)
World J. Gastroenterol.
, vol.13
, Issue.10
, pp. 1522-1527
-
-
Marinho, R.T.1
Giria, J.2
Moura, M.C.3
-
5
-
-
84948002656
-
-
Cancro do fígado pode aumentar 70 por cento até
-
L.P.C. Cancro, Cancro do fígado pode aumentar 70 por cento até, 2015. http://www.ligacontracancro.pt/noticias/detalhes.php?id=115.
-
(2015)
-
-
Cancro, L.P.C.1
-
6
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke H.B., Goodman P.H., Rosen D.B., Henson D.E., Weinstein J.N., Harrell F.E., Marks J.R., Winchester D.P., Bostwick D.G. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997, 79(4):857-862.
-
(1997)
Cancer
, vol.79
, Issue.4
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
Henson, D.E.4
Weinstein, J.N.5
Harrell, F.E.6
Marks, J.R.7
Winchester, D.P.8
Bostwick, D.G.9
-
7
-
-
69249220244
-
Toward breast cancer survivability prediction models through improving training space
-
Thongkam J., Xu G., Zhang Y., Huang F. Toward breast cancer survivability prediction models through improving training space. Expert Syst. Appl. 2009, 36(10):12200-12209.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.10
, pp. 12200-12209
-
-
Thongkam, J.1
Xu, G.2
Zhang, Y.3
Huang, F.4
-
8
-
-
84894093068
-
Knowledge discovery in medicine: current issue and future trend
-
Esfandiari N., Babavalian M.R., Moghadam A.-M.E., Tabar V.K. Knowledge discovery in medicine: current issue and future trend. Expert Syst. Appl. 2014, 41(9):4434-4463.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.9
, pp. 4434-4463
-
-
Esfandiari, N.1
Babavalian, M.R.2
Moghadam, A.-M.E.3
Tabar, V.K.4
-
9
-
-
84891294658
-
Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data
-
Springer
-
Abreu P.H., Amaro H.A., Castro-Silva D., Machado P., Abreu M.H., Afonso N., Dourado A. Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data. XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, IFMBE Proceedings 2014, vol. 41:1366-1369. Springer.
-
(2014)
XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, IFMBE Proceedings
, vol.41
, pp. 1366-1369
-
-
Abreu, P.H.1
Amaro, H.A.2
Castro-Silva, D.3
Machado, P.4
Abreu, M.H.5
Afonso, N.6
Dourado, A.7
-
10
-
-
84923331568
-
Personalizing breast cancer patients with heterogeneous data
-
Springer
-
Abreu P.H., Amaro H.A., Castro-Silva D., Machado P., Abreu M.H., Afonso N., Dourado A. Personalizing breast cancer patients with heterogeneous data. International Conference on Health Informatics, IFMBE Proceedings 2014, vol. 42:39-42. Springer.
-
(2014)
International Conference on Health Informatics, IFMBE Proceedings
, vol.42
, pp. 39-42
-
-
Abreu, P.H.1
Amaro, H.A.2
Castro-Silva, D.3
Machado, P.4
Abreu, M.H.5
Afonso, N.6
Dourado, A.7
-
11
-
-
0032022729
-
Neural-network design for small training sets of high dimension
-
Yuan J., Fine T. Neural-network design for small training sets of high dimension. IEEE Trans. Neural Netw. 1998, 9(2):266-280.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.2
, pp. 266-280
-
-
Yuan, J.1
Fine, T.2
-
12
-
-
77956245661
-
Extreme data mining: Interference from small datasets
-
Andonie R. Extreme data mining: Interference from small datasets. Int. J. Comput. Commun. Control 2010, 5(3):280-291.
-
(2010)
Int. J. Comput. Commun. Control
, vol.5
, Issue.3
, pp. 280-291
-
-
Andonie, R.1
-
13
-
-
0030069896
-
Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
Harrell F., Lee K., Mark D. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15(4):361-387.
-
(1996)
Stat. Med.
, vol.15
, Issue.4
, pp. 361-387
-
-
Harrell, F.1
Lee, K.2
Mark, D.3
-
15
-
-
84886499208
-
On an ensemble algorithm for clustering cancer patient data
-
Qi K., Wu D., Sheng L., Henson D., Schwartz A., Xu E., Xing K., Chen D. On an ensemble algorithm for clustering cancer patient data. BMC Syst. Biol. 2013, 7(Suppl. 4):S9.
-
(2013)
BMC Syst. Biol.
, vol.7
, pp. S9
-
-
Qi, K.1
Wu, D.2
Sheng, L.3
Henson, D.4
Schwartz, A.5
Xu, E.6
Xing, K.7
Chen, D.8
-
16
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16(1):321-357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
17
-
-
84859212951
-
Hepatocellular carcinoma
-
Forner A., Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet 2012, 379(9822):1245-1255.
-
(2012)
Lancet
, vol.379
, Issue.9822
, pp. 1245-1255
-
-
Forner, A.1
Llovet, J.M.2
Bruix, J.3
-
18
-
-
14944361012
-
Assessment of the prognosis of cirrhosis: childpugh versus meld
-
Durand F., Valla D. Assessment of the prognosis of cirrhosis: childpugh versus meld. J. Hepatol. 2005, 42:S100-S107.
-
(2005)
J. Hepatol.
, vol.42
, pp. S100-S107
-
-
Durand, F.1
Valla, D.2
-
19
-
-
33744961676
-
Applications of machine learning in cancer prediction and prognosis
-
Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Informat. 2006, 2:59-78.
-
(2006)
Cancer Informat.
, vol.2
, pp. 59-78
-
-
Cruz, J.A.1
Wishart, D.S.2
-
20
-
-
79954475872
-
Founding of database for cirrhotic patients for early detection of hepatocellular carcinoma
-
Wasyluk H.A., Cianciara J., Bobrowski L., Drapato A. Founding of database for cirrhotic patients for early detection of hepatocellular carcinoma. Hepatology 2010, 6(3):13-16.
-
(2010)
Hepatology
, vol.6
, Issue.3
, pp. 13-16
-
-
Wasyluk, H.A.1
Cianciara, J.2
Bobrowski, L.3
Drapato, A.4
-
21
-
-
84855315952
-
Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network
-
Ho W.-H., Lee K.-T., Chen H.-Y., Ho T.-W., Chiu H.-C. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PLoS ONE 2012, 7(1):e29179.
-
(2012)
PLoS ONE
, vol.7
, Issue.1
-
-
Ho, W.-H.1
Lee, K.-T.2
Chen, H.-Y.3
Ho, T.-W.4
Chiu, H.-C.5
-
22
-
-
84878340736
-
Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network
-
201976-10
-
H.C. Chiu, T.W. Ho, L.K. T., H.Y. Chen, W.H. Ho, Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network, Sci. World J. 2013 (2013) 201976-10.
-
(2013)
Sci. World J.
, Issue.2013
-
-
Chiu, H.C.1
Ho, T.W.L.K.T.2
Chen, H.Y.3
Ho, W.H.4
-
23
-
-
84860356620
-
Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery
-
Shi H.-Y., Lee K.-T., Lee H.-H., Ho W.-H., Sun D.-P., Wang J.-J., Chiu C.-C. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE 2012, 7(4):e35781.
-
(2012)
PLoS ONE
, vol.7
, Issue.4
-
-
Shi, H.-Y.1
Lee, K.-T.2
Lee, H.-H.3
Ho, W.-H.4
Sun, D.-P.5
Wang, J.-J.6
Chiu, C.-C.7
-
25
-
-
84876973042
-
Missing data in medical databases: impute, delete or classify?
-
Cismondi F., Fialho A.S., Vieira S.M., Reti S.R., Sousa J.M., Finkelstein S.N. Missing data in medical databases: impute, delete or classify?. Artif. Intell. Med. 2013, 58(1):63-72.
-
(2013)
Artif. Intell. Med.
, vol.58
, Issue.1
, pp. 63-72
-
-
Cismondi, F.1
Fialho, A.S.2
Vieira, S.M.3
Reti, S.R.4
Sousa, J.M.5
Finkelstein, S.N.6
-
26
-
-
61849150502
-
K nearest neighbours with mutual information for simultaneous classification and missing data imputation
-
García-Laencina P.J., Sancho-Gómez J.-L., Figueiras-Vidal A.R., Verleysen M. K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputing 2009, 72(7-9):1483-1493.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1483-1493
-
-
García-Laencina, P.J.1
Sancho-Gómez, J.-L.2
Figueiras-Vidal, A.R.3
Verleysen, M.4
-
28
-
-
84923379438
-
Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
-
García-Laencina P.J., Abreu P.H., Abreu M.H., Afonso N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput. Biol. Med. 2015, 59:125-133.
-
(2015)
Comput. Biol. Med.
, vol.59
, pp. 125-133
-
-
García-Laencina, P.J.1
Abreu, P.H.2
Abreu, M.H.3
Afonso, N.4
-
29
-
-
0032794882
-
Methods for handling missing values in clinical trials
-
Little R.J.A. Methods for handling missing values in clinical trials. J. Rheumatol. 1999, 26(8):1654-1656.
-
(1999)
J. Rheumatol.
, vol.26
, Issue.8
, pp. 1654-1656
-
-
Little, R.J.A.1
-
30
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya O., Cantor M., Alter O., Sherlock G., Brown P., Botstein D., Tibshirani R., Hastie T., Altman R. Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17:520-525.
-
(2001)
Bioinformatics
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Alter, O.3
Sherlock, G.4
Brown, P.5
Botstein, D.6
Tibshirani, R.7
Hastie, T.8
Altman, R.9
-
31
-
-
77957130052
-
Missing data imputation using statistical and machine learning methods in a real breast cancer problem
-
Jerez J.M., Molina I., Garcia-Laencina P.J., Alba E., Ribelles N., Martin M., Franco L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 2010, 50(2):105-115.
-
(2010)
Artif. Intell. Med.
, vol.50
, Issue.2
, pp. 105-115
-
-
Jerez, J.M.1
Molina, I.2
Garcia-Laencina, P.J.3
Alba, E.4
Ribelles, N.5
Martin, M.6
Franco, L.7
-
32
-
-
0242498488
-
An analysis of four missing data treatment methods for supervised learning
-
Batista G.E., Monard M.C. An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 2003, 17:519-533.
-
(2003)
Appl. Artif. Intell.
, vol.17
, pp. 519-533
-
-
Batista, G.E.1
Monard, M.C.2
-
33
-
-
84864999258
-
Statistical approach to normalization of feature vectors and clustering of mixed datasets
-
Suarez-Alvarez M.M., Pham D.-T., Mikhail Y., Prostov Y.I. Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proc. Roy. Soc. London A: Math. Phys. Eng. Sci. 2012, 468(2145):2630-2652.
-
(2012)
Proc. Roy. Soc. London A: Math. Phys. Eng. Sci.
, vol.468
, Issue.2145
, pp. 2630-2652
-
-
Suarez-Alvarez, M.M.1
Pham, D.-T.2
Mikhail, Y.3
Prostov, Y.I.4
-
35
-
-
77950369345
-
Data clustering: 50 years beyond k-means
-
Jain A.K. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 2010, 31(8):651-666.
-
(2010)
Pattern Recogn. Lett.
, vol.31
, Issue.8
, pp. 651-666
-
-
Jain, A.K.1
-
36
-
-
84858781875
-
Data clustering method for discovering clusters in spatial cancer databases
-
Chauhan R., Kaur H., Alam M. Data clustering method for discovering clusters in spatial cancer databases. Int. J. Comput. Appl. 2010, 10(6):9-14.
-
(2010)
Int. J. Comput. Appl.
, vol.10
, Issue.6
, pp. 9-14
-
-
Chauhan, R.1
Kaur, H.2
Alam, M.3
-
37
-
-
84892573012
-
An integrated clustering and classification approach for the analysis of tumor patient data
-
Springer, Berlin Heidelberg, R. Moreno-Daz, F. Pichler, A. Quesada-Arencibia (Eds.) Computer Aided Systems Theory - EUROCAST 2013
-
Winkler S.M., Affenzeller M., Stekel H. An integrated clustering and classification approach for the analysis of tumor patient data. Lecture Notes in Computer Science 2013, vol. 8111:388-395. Springer, Berlin Heidelberg. R. Moreno-Daz, F. Pichler, A. Quesada-Arencibia (Eds.).
-
(2013)
Lecture Notes in Computer Science
, vol.8111
, pp. 388-395
-
-
Winkler, S.M.1
Affenzeller, M.2
Stekel, H.3
-
41
-
-
0038391443
-
Bagging to improve the accuracy of a clustering procedure
-
Dudoit S., Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19(9):1090-1099.
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1090-1099
-
-
Dudoit, S.1
Fridlyand, J.2
-
43
-
-
84896778790
-
Exploring the diversity in cluster ensemble generation: random sampling and random projection
-
Yang F., Li X., Li Q., Li T. Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst. Appl. 2014, 41(10):4844-4866.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.10
, pp. 4844-4866
-
-
Yang, F.1
Li, X.2
Li, Q.3
Li, T.4
-
44
-
-
84896389867
-
Probabilistic cluster structure ensemble
-
Yu Z., Li L., Wong H.-S., You J., Han G., Gao Y., Yu G. Probabilistic cluster structure ensemble. Inform. Sci. 2014, 267(0):16-34.
-
(2014)
Inform. Sci.
, vol.267
, pp. 16-34
-
-
Yu, Z.1
Li, L.2
Wong, H.-S.3
You, J.4
Han, G.5
Gao, Y.6
Yu, G.7
-
45
-
-
0003633237
-
Stratified random sampling
-
Springer, Berlin, Heidelberg
-
de Vries P.G. Stratified random sampling. Sampling Theory for Forest Inventory 1986, 31-55. Springer, Berlin, Heidelberg.
-
(1986)
Sampling Theory for Forest Inventory
, pp. 31-55
-
-
de Vries, P.G.1
-
46
-
-
14644390912
-
Using auc and accuracy in evaluating learning algorithms
-
Huang J. Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17(3):290-310.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.3
, pp. 290-310
-
-
Huang, J.1
-
47
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Machine Learning Res. 2006, 7:1-30.
-
(2006)
J. Machine Learning Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|