-
1
-
-
84922858726
-
The infant microbiome development: mom matters
-
Mueller NT, Bakacs E, Combellick J, et al. The infant microbiome development: mom matters. Trends Mol Med. 2015;21:109–117.
-
(2015)
Trends Mol Med
, vol.21
, pp. 109-117
-
-
Mueller, N.T.1
Bakacs, E.2
Combellick, J.3
-
2
-
-
84953217700
-
The infant microbiome: implications for infant health and neurocognitive development
-
Yang I, Corwin EJ, Brennan PA, et al. The infant microbiome: implications for infant health and neurocognitive development. Nurs Res. 2016;65:76–88.
-
(2016)
Nurs Res
, vol.65
, pp. 76-88
-
-
Yang, I.1
Corwin, E.J.2
Brennan, P.A.3
-
3
-
-
85027517201
-
Development of the gut microbiota in infancy and its impact on health in later life
-
Tanaka M, Nakayama J., Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66:515–522.
-
(2017)
Allergol Int
, vol.66
, pp. 515-522
-
-
Tanaka, M.1
Nakayama, J.2
-
4
-
-
84962530235
-
Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases
-
Ignacio A, Morales CI, Câmara NOS, et al. Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front Immunol. 2016;77:54.
-
(2016)
Front Immunol
, vol.77
, pp. 54
-
-
Ignacio, A.1
Morales, C.I.2
Câmara, N.O.S.3
-
5
-
-
85021455479
-
Intestinal dysbiosis and probiotic applications in autoimmune diseases
-
Oliveira GLV, Leite AZ, Higuchi BS, et al. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2017;152:1–12.
-
(2017)
Immunology
, vol.152
, pp. 1-12
-
-
Oliveira, G.L.V.1
Leite, A.Z.2
Higuchi, B.S.3
-
6
-
-
79954423741
-
The MHC, disease and selection
-
Trowsdale J. The MHC, disease and selection. Immunol Lett. 2011;137:1–8.
-
(2011)
Immunol Lett
, vol.137
, pp. 1-8
-
-
Trowsdale, J.1
-
7
-
-
84941024816
-
Human autoimmune diseases: a comprehensive update
-
Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Me. 2015;278:369–395.
-
(2015)
J Intern Me
, vol.278
, pp. 369-395
-
-
Wang, L.1
Wang, F.S.2
Gershwin, M.E.3
-
9
-
-
84903754213
-
Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection
-
Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33:314–329.
-
(2014)
Int Rev Immunol
, vol.33
, pp. 314-329
-
-
Cunningham, M.W.1
-
10
-
-
84905011139
-
Breach of tolerance: primary biliary cirrhosis
-
Wang L, Wang FS, Chang C, et al. Breach of tolerance: primary biliary cirrhosis. Semin Liver Dis. 2014;34:297–317.
-
(2014)
Semin Liver Dis
, vol.34
, pp. 297-317
-
-
Wang, L.1
Wang, F.S.2
Chang, C.3
-
11
-
-
85020054526
-
Epstein–Barr virus and multiple sclerosis: updating Pender’s hypothesis
-
Laurence M, Benito-León J. Epstein–Barr virus and multiple sclerosis: updating Pender’s hypothesis. Mult Scler Relat Disord. 2017;16:8–14.
-
(2017)
Mult Scler Relat Disord
, vol.16
, pp. 8-14
-
-
Laurence, M.1
Benito-León, J.2
-
12
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
-
13
-
-
8144226856
-
The gut microbiota as an environmental factor that regulates fat storage
-
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–15723.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 15718-15723
-
-
Bäckhed, F.1
Ding, H.2
Wang, T.3
-
14
-
-
84977496039
-
An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis
-
Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43.
-
(2016)
Genome Med
, vol.8
, pp. 43
-
-
Chen, J.1
Wright, K.2
Davis, J.M.3
-
15
-
-
85043592218
-
Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites
-
Fujisaka S, Avila-Pacheco J, Soto M, et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Rep. 2018;22:3072–3086.
-
(2018)
Cell Rep
, vol.22
, pp. 3072-3086
-
-
Fujisaka, S.1
Avila-Pacheco, J.2
Soto, M.3
-
16
-
-
84899538713
-
Diet, microbiota and autoimmune diseases
-
Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23:518–526.
-
(2014)
Lupus
, vol.23
, pp. 518-526
-
-
Vieira, S.M.1
Pagovich, O.E.2
Kriegel, M.A.3
-
17
-
-
84920263464
-
The impact of high-fat diet on metabolism and immune defense in small intestine mucosa
-
Wisniewski JR, Friedrich A, Keller T, et al. The impact of high-fat diet on metabolism and immune defense in small intestine mucosa. J Proteome Res. 2015;14:353–365.
-
(2015)
J Proteome Res
, vol.14
, pp. 353-365
-
-
Wisniewski, J.R.1
Friedrich, A.2
Keller, T.3
-
18
-
-
12744273405
-
Dietary modulation of the human colonic microbiota: updating the concept of prebiotics
-
Gibson GR, Probert HM, Loo JV, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17:259–275.
-
(2004)
Nutr Res Rev
, vol.17
, pp. 259-275
-
-
Gibson, G.R.1
Probert, H.M.2
Loo, J.V.3
-
19
-
-
0029013322
-
Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics
-
Gibson G, Roberfroid M. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–1412.
-
(1995)
J Nutr
, vol.125
, pp. 1401-1412
-
-
Gibson, G.1
Roberfroid, M.2
-
21
-
-
84977507546
-
Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions
-
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8:46.
-
(2016)
Genome Med
, vol.8
, pp. 46
-
-
Zhang, L.S.1
Davies, S.S.2
-
22
-
-
85047834810
-
The impact of dietary fiber on gut microbiota in host health and disease
-
Makki K, Deehan EC, Walter J, et al. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23:705–715.
-
(2018)
Cell Host Microbe
, vol.23
, pp. 705-715
-
-
Makki, K.1
Deehan, E.C.2
Walter, J.3
-
23
-
-
85033784875
-
Dietary and microbial metabolites in the regulation of host immunity
-
Shibata N, Kunisawa J, Kiyono H. Dietary and microbial metabolites in the regulation of host immunity. Front Microbiol. 2017;8:2171.
-
(2017)
Front Microbiol
, vol.8
, pp. 2171
-
-
Shibata, N.1
Kunisawa, J.2
Kiyono, H.3
-
24
-
-
84961217329
-
The pharmacology and function of receptors for short-chain fatty acids
-
Bolognini D, Tobin AB, Milligan G, et al. The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol. 2016;89:388–398.
-
(2016)
Mol Pharmacol
, vol.89
, pp. 388-398
-
-
Bolognini, D.1
Tobin, A.B.2
Milligan, G.3
-
25
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
-
26
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
-
27
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–139.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
-
28
-
-
84973666361
-
The colonic crypt protects stem cells from microbiota-derived metabolites
-
Kaiko GE, Ryu SH, Koues OI, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–1720.
-
(2016)
Cell
, vol.165
, pp. 1708-1720
-
-
Kaiko, G.E.1
Ryu, S.H.2
Koues, O.I.3
-
29
-
-
84883662960
-
Vitamin-mediated regulation of intestinal immunity
-
Kunisawa J, Kiyono H. Vitamin-mediated regulation of intestinal immunity. Front Immunol. 2013;4:189.
-
(2013)
Front Immunol
, vol.4
, pp. 189
-
-
Kunisawa, J.1
Kiyono, H.2
-
30
-
-
84942085554
-
Vitamin-mediated immune regulation in the development of inflammatory diseases
-
Suzuki H, Kunisawa J. Vitamin-mediated immune regulation in the development of inflammatory diseases. Endocrine Metab Immune Disord Drug Targets. 2015;15:212–215.
-
(2015)
Endocrine Metab Immune Disord Drug Targets
, vol.15
, pp. 212-215
-
-
Suzuki, H.1
Kunisawa, J.2
-
32
-
-
84879384339
-
Gut microbiota composition modifies fecal metabolic profiles in mice
-
Zhao Y, Wu J, J V L, et al. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res. 2013;12:2987–2999.
-
(2013)
J Proteome Res
, vol.12
, pp. 2987-2999
-
-
Zhao, Y.1
Wu, J.2
-
33
-
-
58449119188
-
Establishment of the gut microbiota in Western infants
-
Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr Int J Paediatr. 2009;98:229–238.
-
(2009)
Acta Paediatr Int J Paediatr
, vol.98
, pp. 229-238
-
-
Adlerberth, I.1
Wold, A.E.2
-
34
-
-
85019167519
-
Modulation of gut microbiota in pathological states
-
Wang Y, Wang B, Wu J, et al. Modulation of gut microbiota in pathological states. Engineering. 2017;3:83–89.
-
(2017)
Engineering
, vol.3
, pp. 83-89
-
-
Wang, Y.1
Wang, B.2
Wu, J.3
-
35
-
-
33847378014
-
Rapid and noninvasive metabonomic characterization of inflammatory bowel disease
-
Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–551.
-
(2007)
J Proteome Res
, vol.6
, pp. 546-551
-
-
Marchesi, J.R.1
Holmes, E.2
Khan, F.3
-
36
-
-
79952756960
-
Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
-
Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108:4554–4561.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4554-4561
-
-
Dethlefsen, L.1
Relman, D.A.2
-
37
-
-
84931355745
-
Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection
-
Weingarden A, González A, Vázquez-Baeza Y, et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome. 2015;3:10.
-
(2015)
Microbiome
, vol.3
, pp. 10
-
-
Weingarden, A.1
González, A.2
Vázquez-Baeza, Y.3
-
38
-
-
84920931626
-
Fecal microbiota transplantation broadening its application beyond intestinal disorders
-
Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21:102–111.
-
(2015)
World J Gastroenterol
, vol.21
, pp. 102-111
-
-
Xu, M.Q.1
Cao, H.L.2
Wang, W.Q.3
-
39
-
-
84954543513
-
Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial
-
Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2016;315(2):142–149.
-
(2016)
JAMA
, vol.315
, Issue.2
, pp. 142-149
-
-
Lee, C.H.1
Steiner, T.2
Petrof, E.O.3
-
40
-
-
77950251400
-
A human gut microbial gene catalog established by metagenomic sequencing
-
Qin J, Li R, Raes J, et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464:59–65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
-
41
-
-
84896708902
-
Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection
-
Song Y, Garg S, Girotra M, et al. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS ONE. 2013;8:e81330.
-
(2013)
PLoS ONE
, vol.8
-
-
Song, Y.1
Garg, S.2
Girotra, M.3
-
42
-
-
84990041963
-
Gut microbiota developments with emphasis on inflammatory bowel disease: report from the gut microbiota for health world summit 2016
-
Eppinga H, Fuhler GM, Peppelenbosch MP, et al. Gut microbiota developments with emphasis on inflammatory bowel disease: report from the gut microbiota for health world summit 2016. Gastroenterology. 2016;151:e1–4.
-
(2016)
Gastroenterology
, vol.151
, pp. e1-e4
-
-
Eppinga, H.1
Fuhler, G.M.2
Peppelenbosch, M.P.3
-
43
-
-
84883478660
-
Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice
-
Ridaura VK, Faith JJ, Rey FE, et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2013;341:1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
-
44
-
-
85014315210
-
Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection
-
Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152:799–811.
-
(2017)
Gastroenterology
, vol.152
, pp. 799-811
-
-
Ott, S.J.1
Waetzig, G.H.2
Rehman, A.3
-
45
-
-
84988448914
-
Fecal microbiota transplantation and its usage in neuropsychiatric disorders
-
Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci. 2016;14:231.
-
(2016)
Clin Psychopharmacol Neurosci
, vol.14
, pp. 231
-
-
Evrensel, A.1
Ceylan, M.E.2
-
46
-
-
85009999827
-
Can probiotics modulate human disease by impacting intestinal barrier function?
-
Bron PA, Kleerebezem M, Brummer RJ, et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117:93–107.
-
(2017)
Br J Nutr
, vol.117
, pp. 93-107
-
-
Bron, P.A.1
Kleerebezem, M.2
Brummer, R.J.3
-
47
-
-
84883418106
-
Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion
-
Yadav H, Lee J-H, Lloyd J, et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem. 2013;288:25088–25097.
-
(2013)
J Biol Chem
, vol.288
, pp. 25088-25097
-
-
Yadav, H.1
Lee, J.-H.2
Lloyd, J.3
-
48
-
-
84953255599
-
Probiotc VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3-dioxygenase-enriched tolerogenic intestinal environment
-
Dolpady J, Sorini C, Di Pietro C, et al. Probiotc VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3-dioxygenase-enriched tolerogenic intestinal environment. J Diabetes Res. 2016;2016:7569431.
-
(2016)
J Diabetes Res
, vol.2016
, pp. 7569431
-
-
Dolpady, J.1
Sorini, C.2
Di Pietro, C.3
-
49
-
-
40849085594
-
Lactobacillus casei suppresses experimental arthritis by down regulating T helper 1 effector functions
-
So JS, Kwon HK, Lee CG, et al. Lactobacillus casei suppresses experimental arthritis by down regulating T helper 1 effector functions. Mol Immunol. 2008;45:2690–2699.
-
(2008)
Mol Immunol
, vol.45
, pp. 2690-2699
-
-
So, J.S.1
Kwon, H.K.2
Lee, C.G.3
-
50
-
-
52949121387
-
Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis
-
So JS, Lee CG, Kwon HK, et al. Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis. Mol Immunol. 2008;46:172–180.
-
(2008)
Mol Immunol
, vol.46
, pp. 172-180
-
-
So, J.S.1
Lee, C.G.2
Kwon, H.K.3
-
51
-
-
41549104613
-
Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity
-
Maassen CBM, Claassen E. Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity. Vaccine. 2008;26:2056–2057.
-
(2008)
Vaccine
, vol.26
, pp. 2056-2057
-
-
Maassen, C.B.M.1
Claassen, E.2
-
52
-
-
77958119730
-
Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression
-
Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185:4101–4108.
-
(2010)
J Immunol
, vol.185
, pp. 4101-4108
-
-
Ochoa-Reparaz, J.1
Mielcarz, D.W.2
Ditrio, L.E.3
-
53
-
-
81055129714
-
The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells
-
Takata K, Kinoshita M, Okuno T, et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE. 2011;6:e27644.
-
(2011)
PLoS ONE
, vol.6
-
-
Takata, K.1
Kinoshita, M.2
Okuno, T.3
-
54
-
-
84873714598
-
Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response
-
Kwon HK, Kim GC, Kim Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol. 2013;146:217–227.
-
(2013)
Clin Immunol
, vol.146
, pp. 217-227
-
-
Kwon, H.K.1
Kim, G.C.2
Kim, Y.3
-
55
-
-
85009765423
-
Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial
-
Kouchaki E, Tamtaii OR, Salami M, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2017;36:1245–1249.
-
(2017)
Clin Nutr
, vol.36
, pp. 1245-1249
-
-
Kouchaki, E.1
Tamtaii, O.R.2
Salami, M.3
-
56
-
-
79958729747
-
A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis
-
Pineda MA, Thompson SF, Summers K, et al. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit. 2011;17:CR347–54.
-
(2011)
Med Sci Monit
, vol.17
, pp. CR347-CR354
-
-
Pineda, M.A.1
Thompson, S.F.2
Summers, K.3
-
57
-
-
84990888674
-
The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats
-
Abhari K, Shekarforoush SS, Hosseinzadeh S, et al. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr Res. 2016;60:30876.
-
(2016)
Food Nutr Res
, vol.60
, pp. 30876
-
-
Abhari, K.1
Shekarforoush, S.S.2
Hosseinzadeh, S.3
-
58
-
-
44649149490
-
Human derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens
-
Spinler J, Taweechotipatr M, Rognerud C, et al. Human derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008;14:166–171.
-
(2008)
Anaerobe
, vol.14
, pp. 166-171
-
-
Spinler, J.1
Taweechotipatr, M.2
Rognerud, C.3
-
59
-
-
83655201459
-
Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid
-
O’Shea E, Cotter P, Stanton C, et al. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol. 2011;152:189–205.
-
(2011)
Int J Food Microbiol
, vol.152
, pp. 189-205
-
-
O’Shea, E.1
Cotter, P.2
Stanton, C.3
-
60
-
-
84871670020
-
Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation
-
Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6:39–51.
-
(2013)
Ther Adv Gastroenterol
, vol.6
, pp. 39-51
-
-
Hemarajata, P.1
Versalovic, J.2
-
61
-
-
84908608590
-
The gut microbiota, bacterial metabolites and colorectal cancer
-
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–672.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 661-672
-
-
Louis, P.1
Hold, G.L.2
Flint, H.J.3
-
62
-
-
84929502588
-
Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
-
Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe. 2015;17:662–671.
-
(2015)
Cell Host & Microbe
, vol.17
, pp. 662-671
-
-
Kelly, C.J.1
Zheng, L.2
Campbell, E.L.3
-
63
-
-
84893900668
-
Summer meeting 2013: growth and physiology of Bifidobacteria
-
DeVuyst L, Moens F, Selak M. Summer meeting 2013: growth and physiology of Bifidobacteria. J App Microbiol. 2014;116:477–491.
-
(2014)
J App Microbiol
, vol.116
, pp. 477-491
-
-
DeVuyst, L.1
Moens, F.2
Selak, M.3
-
64
-
-
84899969247
-
Phylogeny, culturing, and metagenomics of the human gut microbiota
-
Walker AW, Duncan SH, Louis P. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22:267–274.
-
(2014)
Trends Microbiol
, vol.22
, pp. 267-274
-
-
Walker, A.W.1
Duncan, S.H.2
Louis, P.3
-
65
-
-
84910614571
-
Novel opportunities for next-generation probiotics targeting metabolic syndrome
-
Cani PD, Van Hul M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol. 2015;32:21–27.
-
(2015)
Curr Opin Biotechnol
, vol.32
, pp. 21-27
-
-
Cani, P.D.1
Van Hul, M.2
-
66
-
-
84930531205
-
Manipulating the gut microbiota to maintain health and treat disease
-
Scott KP, Antoine JM, Midtvedt T. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis. 2015;26:25877.
-
(2015)
Microb Ecol Health Dis
, vol.26
, pp. 25877
-
-
Scott, K.P.1
Antoine, J.M.2
Midtvedt, T.3
-
68
-
-
84895068197
-
Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants
-
Di Gioia D, Aloisio I, Mazzola G. Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol. 2014;98:563–577.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 563-577
-
-
Di Gioia, D.1
Aloisio, I.2
Mazzola, G.3
-
69
-
-
84912102518
-
Intestinal microbiota in health and disease: role of bifidobacterial in gut homeostasis
-
Tojo R, Suárez A, Clemente MG. Intestinal microbiota in health and disease: role of bifidobacterial in gut homeostasis. World J Gastroenterol. 2014;20:15163–15176.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 15163-15176
-
-
Tojo, R.1
Suárez, A.2
Clemente, M.G.3
-
70
-
-
84924546208
-
The role of probiotic lactic acid bacteria and bifidobacterial in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials
-
Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J. The role of probiotic lactic acid bacteria and bifidobacterial in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int. 2015;2015:505878.
-
(2015)
Biomed Res Int
, vol.2015
, pp. 505878
-
-
Saez-Lara, M.J.1
Gomez-Llorente, C.2
Plaza-Diaz, J.3
-
71
-
-
84946044287
-
Mutual cross-feeding interactions between Bifidobacterium longum NCC2705 and Eubacterium rectale ATCC33656 explain the bifidogenic and butyrogenic effects of arabinoxylan-oligosaccharides
-
Rivière A, Gagnon M, Weckx S. Mutual cross-feeding interactions between Bifidobacterium longum NCC2705 and Eubacterium rectale ATCC33656 explain the bifidogenic and butyrogenic effects of arabinoxylan-oligosaccharides. Appl Environ Microbiol. 2015;81:7767–7781.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 7767-7781
-
-
Rivière, A.1
Gagnon, M.2
Weckx, S.3
-
72
-
-
84881550079
-
Butyricicoccus pullicaecorum in inflammatory bowel disease
-
Eeckhaut V, Machiels K, Perrier C. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013;62:1745–1752.
-
(2013)
Gut
, vol.62
, pp. 1745-1752
-
-
Eeckhaut, V.1
Machiels, K.2
Perrier, C.3
-
73
-
-
84891743578
-
Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics
-
Eeckhaut V, Ducatelle R, Sas B. Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics. Gut. 2014;63:367.
-
(2014)
Gut
, vol.63
, pp. 367
-
-
Eeckhaut, V.1
Ducatelle, R.2
Sas, B.3
-
74
-
-
84926612462
-
Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model
-
Martín R, Miquel S, Chain F. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 2015;15:67.
-
(2015)
BMC Microbiol
, vol.15
, pp. 67
-
-
Martín, R.1
Miquel, S.2
Chain, F.3
-
75
-
-
16544392923
-
Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function
-
Braat H, Van Den Brande J, Van Tol E, et al. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr. 2004;80:1618–1625.
-
(2004)
Am J Clin Nutr
, vol.80
, pp. 1618-1625
-
-
Braat, H.1
Van Den Brande, J.2
Van Tol, E.3
-
76
-
-
0037843521
-
Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers
-
Schultz M, Linde HJ, Lehn N, et al. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res. 2003;70:165–173.
-
(2003)
J Dairy Res
, vol.70
, pp. 165-173
-
-
Schultz, M.1
Linde, H.J.2
Lehn, N.3
-
77
-
-
34247891512
-
TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation
-
Liu Y-J, Soumelis V, Watanabe N, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol. 2007;25:193–219.
-
(2007)
Annu Rev Immunol
, vol.25
, pp. 193-219
-
-
Liu, Y.-J.1
Soumelis, V.2
Watanabe, N.3
-
79
-
-
55149113944
-
Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites
-
Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2008;226:172–190.
-
(2008)
Immunol Rev
, vol.226
, pp. 172-190
-
-
Saenz, S.A.1
Taylor, B.C.2
Artis, D.3
-
81
-
-
84941647193
-
Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes
-
Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitós E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact. 2015;14:137.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 137
-
-
Cano-Garrido, O.1
Seras-Franzoso, J.2
Garcia-Fruitós, E.3
-
82
-
-
0034714188
-
Treatment of murine colitis by Lactococcus lactis secreting interleukin-10
-
Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352–1355.
-
(2000)
Science
, vol.289
, pp. 1352-1355
-
-
Steidler, L.1
Hans, W.2
Schotte, L.3
-
83
-
-
77953359952
-
AG013, a mouth rinse formulation of Lactococcus lactis secreting human trefoil factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis
-
Caluwaerts S, Vandenbroucke K, Steidler L, et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human trefoil factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol. 2010;46:564–570.
-
(2010)
Oral Oncol
, vol.46
, pp. 564-570
-
-
Caluwaerts, S.1
Vandenbroucke, K.2
Steidler, L.3
-
84
-
-
84906827511
-
Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the type 1 diabetes case
-
Robert S, Steidler L. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the type 1 diabetes case. Microb Cell Fact. 2014;13:S11.
-
(2014)
Microb Cell Fact
, vol.13
, pp. S11
-
-
Robert, S.1
Steidler, L.2
-
85
-
-
77950799444
-
Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus
-
et al
-
Hamady ZZ, Scott N, Farrar MD, et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut. 2010;59:461–469.
-
(2010)
Gut
, vol.59
, pp. 461-469
-
-
Hamady, Z.Z.1
Scott, N.2
Farrar, M.D.3
-
86
-
-
80051504591
-
Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1
-
et al
-
Hamady ZZ, Scott N, Farrar MD, et al. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1. Inflamm Bowel Dis. 2011;17:1925–1935.
-
(2011)
Inflamm Bowel Dis
, vol.17
, pp. 1925-1935
-
-
Hamady, Z.Z.1
Scott, N.2
Farrar, M.D.3
-
87
-
-
17644378995
-
Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan
-
et al
-
Farrar MD, Whitehead TR, Lan J, et al. Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan. J Appl Microbiol. 2005;98:1191–1197.
-
(2005)
J Appl Microbiol
, vol.98
, pp. 1191-1197
-
-
Farrar, M.D.1
Whitehead, T.R.2
Lan, J.3
-
88
-
-
84926186891
-
A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation
-
Whelan RA, Rausch S, Ebner F, et al. A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther. 2014;22:1730–1740.
-
(2014)
Mol Ther
, vol.22
, pp. 1730-1740
-
-
Whelan, R.A.1
Rausch, S.2
Ebner, F.3
-
89
-
-
84919786957
-
Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine
-
Maier E, Anderson RC, Roy NC. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients. 2015;7:45–73.
-
(2015)
Nutrients
, vol.7
, pp. 45-73
-
-
Maier, E.1
Anderson, R.C.2
Roy, N.C.3
-
90
-
-
83655210633
-
Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila
-
Derrien M, Van Baarlen P, Hooiveld G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.
-
(2011)
Front Microbiol
, vol.2
, pp. 166
-
-
Derrien, M.1
Van Baarlen, P.2
Hooiveld, G.3
-
91
-
-
85049963474
-
Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice
-
Hänninen A, Toivonen R, Pöysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2017; Doi:10.1136/gutjnl-2017-314508.
-
(2017)
Gut
-
-
Hänninen, A.1
Toivonen, R.2
Pöysti, S.3
-
92
-
-
85033576428
-
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
-
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97.
-
(2018)
Science
, vol.359
, pp. 91-97
-
-
Routy, B.1
Le Chatelier, E.2
Derosa, L.3
-
93
-
-
85032951643
-
Gut microbes shape response to cancer immunotherapy
-
Kaiser J. Gut microbes shape response to cancer immunotherapy. Science. 2017;358:573.
-
(2017)
Science
, vol.358
, pp. 573
-
-
Kaiser, J.1
-
94
-
-
84878465280
-
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
-
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–9071.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 9066-9071
-
-
Everard, A.1
Belzer, C.2
Geurts, L.3
-
95
-
-
84997701899
-
A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice
-
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–113.
-
(2017)
Nat Med
, vol.23
, pp. 107-113
-
-
Plovier, H.1
Everard, A.2
Druart, C.3
-
96
-
-
85030150098
-
Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications
-
Hage ER, Hernandez-Sanabria E, Van de Wiele T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol. 2017;8:1889.
-
(2017)
Front Microbiol
, vol.8
, pp. 1889
-
-
Hage, E.R.1
Hernandez-Sanabria, E.2
Van de Wiele, T.3
-
97
-
-
65249149643
-
Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla
-
Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl Acad Sci U S A. 2009;106:5859–5864.
-
(2009)
Proc. Natl Acad Sci U S A
, vol.106
, pp. 5859-5864
-
-
Mahowald, M.A.1
Rey, F.E.2
Seedorf, H.3
-
98
-
-
0347756655
-
Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-γ and ReIA
-
Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-γ and ReIA. Nat Immunol. 2004;5:104–112.
-
(2004)
Nat Immunol
, vol.5
, pp. 104-112
-
-
Kelly, D.1
Campbell, J.I.2
King, T.P.3
-
99
-
-
84877913270
-
Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent
-
Wrzosek L, Miquel S, Noordine ML, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013;11:61.
-
(2013)
BMC Biol
, vol.11
, pp. 61
-
-
Wrzosek, L.1
Miquel, S.2
Noordine, M.L.3
-
100
-
-
35448985445
-
Bacteroides: the good, the bad, and the nitty-gritty
-
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593–621.
-
(2007)
Clin Microbiol Rev
, vol.20
, pp. 593-621
-
-
Wexler, H.M.1
-
101
-
-
79956311926
-
The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round JL, Lee SM, Li J, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
Lee, S.M.2
Li, J.3
-
102
-
-
84894118144
-
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders
-
Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463.
-
(2013)
Cell
, vol.155
, pp. 1451-1463
-
-
Hsiao, E.Y.1
McBride, S.W.2
Hsien, S.3
-
103
-
-
85046992850
-
Bacteroides fragilis protects against antibiotic associated diarrhea in rats by modulating intestinal defenses
-
Zhang W, Zhu B, Xu J, et al. Bacteroides fragilis protects against antibiotic associated diarrhea in rats by modulating intestinal defenses. Front Immunol. 2018;9:1040.
-
(2018)
Front Immunol
, vol.9
, pp. 1040
-
-
Zhang, W.1
Zhu, B.2
Xu, J.3
-
104
-
-
44449106055
-
A microbial symbiosis factor prevents intestinal inflammatory disease
-
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–625.
-
(2008)
Nature
, vol.453
, pp. 620-625
-
-
Mazmanian, S.K.1
Round, J.L.2
Kasper, D.L.3
-
105
-
-
84953252234
-
Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses
-
Rossi O, Van Berkel LA, Chain F, et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep. 2016;6:18507.
-
(2016)
Sci Rep
, vol.6
, pp. 18507
-
-
Rossi, O.1
Van Berkel, L.A.2
Chain, F.3
-
106
-
-
84953856299
-
Modulation of the human gut microbiota by dietary fibres occurs at the species level
-
Chung WS, Walker AW, Louis P, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016;1:3.
-
(2016)
BMC Biol
, vol.1
, pp. 3
-
-
Chung, W.S.1
Walker, A.W.2
Louis, P.3
-
107
-
-
85021740602
-
Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic
-
Martín R, Miquel S, Benevides L, et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol. 2017;8:1226.
-
(2017)
Front Microbiol
, vol.8
, pp. 1226
-
-
Martín, R.1
Miquel, S.2
Benevides, L.3
-
108
-
-
84884816918
-
Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis
-
Qiu X, Zhang M, Yang X, et al. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohn’s Colitis. 2013;11:e558–68.
-
(2013)
J Crohn’s Colitis
, vol.11
, pp. e558-e568
-
-
Qiu, X.1
Zhang, M.2
Yang, X.3
-
109
-
-
77957075815
-
Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
-
Filippo CD, Cavalieri D, Paola MD, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–14696.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14691-14696
-
-
Filippo, C.D.1
Cavalieri, D.2
Paola, M.D.3
-
110
-
-
85017604806
-
Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis
-
Pianta A, Arvikar S, Strle K, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69:964–975.
-
(2017)
Arthritis Rheumatol
, vol.69
, pp. 964-975
-
-
Pianta, A.1
Arvikar, S.2
Strle, K.3
-
111
-
-
84997815933
-
Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice
-
Marietta EV, Murray JA, Luckey DH, et al. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol. 2016;68:2878–2888.
-
(2016)
Arthritis Rheumatol
, vol.68
, pp. 2878-2888
-
-
Marietta, E.V.1
Murray, J.A.2
Luckey, D.H.3
-
112
-
-
85026854161
-
Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease
-
Mangalam A, Shahi SK, Luckey D, et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep. 2017;20:1269–1277.
-
(2017)
Cell Rep
, vol.20
, pp. 1269-1277
-
-
Mangalam, A.1
Shahi, S.K.2
Luckey, D.3
-
113
-
-
84908322572
-
Arthritis susceptibility and the gut microbiome
-
Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett. 2014;588:4244–4249.
-
(2014)
FEBS Lett
, vol.588
, pp. 4244-4249
-
-
Taneja, V.1
-
114
-
-
84860118160
-
Loss of sex and age-driven differences in the gut microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice
-
Gomez A, Yoeman C, Luckey D, White BA, Taneja V, et al. Loss of sex and age-driven differences in the gut microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice. PLoS ONE. 2012;7:e36095.
-
(2012)
PLoS ONE
, vol.7
-
-
Gomez, A.1
Yoeman, C.2
Luckey, D.3
White, B.A.4
Taneja, V.5
-
115
-
-
84857965571
-
Microencapsulation of probiotic cells for food applications
-
Heidebach T, Först P, Kulozik U. Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr. 2012;52:291–311.
-
(2012)
Crit Rev Food Sci Nutr
, vol.52
, pp. 291-311
-
-
Heidebach, T.1
Först, P.2
Kulozik, U.3
-
117
-
-
85029688885
-
Safety of novel microbes for human consumption: practical examples of assessment in the European Union
-
Brodmann T, Endo A, Gueimonde M, et al. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front Microbiol. 2017;8:1725.
-
(2017)
Front Microbiol
, vol.8
, pp. 1725
-
-
Brodmann, T.1
Endo, A.2
Gueimonde, M.3
-
118
-
-
84923351295
-
Regulatory categories of probiotics across the globe: a review representing existing and recommended categorization
-
Arora M, Baldi A. Regulatory categories of probiotics across the globe: a review representing existing and recommended categorization. Indian J Med Microbiol. 2015;33:2–10.
-
(2015)
Indian J Med Microbiol
, vol.33
, pp. 2-10
-
-
Arora, M.1
Baldi, A.2
-
119
-
-
84869421349
-
Metchnikoff and the microbiome
-
Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380:1810–1811.
-
(2012)
Lancet
, vol.380
, pp. 1810-1811
-
-
Podolsky, S.H.1
-
120
-
-
84952630944
-
The gut microbiome in autoimmunity: sex matters
-
Gomez A, Luckey D, Taneja V. The gut microbiome in autoimmunity: sex matters. Clin Immunol. 2015;159:154–162.
-
(2015)
Clin Immunol
, vol.159
, pp. 154-162
-
-
Gomez, A.1
Luckey, D.2
Taneja, V.3
-
121
-
-
85043285818
-
Translocation of a gut pathobiont drives autoimmunity in mice and humans
-
Vieira M, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359:1156–1161.
-
(2018)
Science
, vol.359
, pp. 1156-1161
-
-
Vieira, M.1
Hiltensperger, M.2
Kumar, V.3
-
122
-
-
77249133143
-
Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis
-
Vandenbroucke K, De Haard H, Beirnaert E, et al. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 2010;3:49–56.
-
(2010)
Mucosal Immunol
, vol.3
, pp. 49-56
-
-
Vandenbroucke, K.1
De Haard, H.2
Beirnaert, E.3
-
123
-
-
4143082646
-
Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice
-
Vandenbroucke K, Hans W, Van Huysse J, et al. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology. 2004;127:502–513.
-
(2004)
Gastroenterology
, vol.127
, pp. 502-513
-
-
Vandenbroucke, K.1
Hans, W.2
Van Huysse, J.3
-
124
-
-
34547542844
-
Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein
-
Foligne B, Dessein R, Marceau M, et al. Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology. 2007;133:862–874.
-
(2007)
Gastroenterology
, vol.133
, pp. 862-874
-
-
Foligne, B.1
Dessein, R.2
Marceau, M.3
-
125
-
-
78149270683
-
Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice
-
Watterlot L, Rochat T, Sokol H, et al. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol. 2010;144:35–41.
-
(2010)
Int J Food Microbiol
, vol.144
, pp. 35-41
-
-
Watterlot, L.1
Rochat, T.2
Sokol, H.3
-
126
-
-
33744933432
-
A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease
-
Braat H, Rottiers P, Hommes DW, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:754–759.
-
(2006)
Clin Gastroenterol Hepatol
, vol.4
, pp. 754-759
-
-
Braat, H.1
Rottiers, P.2
Hommes, D.W.3
-
127
-
-
84890608517
-
Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice
-
Hanson ML, Hixon JA, Li W, et al. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology. 2014;146:210–221:e213.
-
(2014)
Gastroenterology
, vol.146
-
-
Hanson, M.L.1
Hixon, J.A.2
Li, W.3
-
128
-
-
84860228482
-
Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice
-
Takiishi T, Korf H, Van Belle TL, et al. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest. 2012;122:1717–1725.
-
(2012)
J Clin Invest
, vol.122
, pp. 1717-1725
-
-
Takiishi, T.1
Korf, H.2
Van Belle, T.L.3
-
129
-
-
84929294360
-
Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice
-
Ma Y, Liu J, Hou J, et al. Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS ONE. 2014;9:e105701vv.
-
(2014)
PLoS ONE
, vol.9
-
-
Ma, Y.1
Liu, J.2
Hou, J.3
|