-
1
-
-
84963891450
-
Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles
-
Allegretti, J.R., Kearney, S., Li, N., Bogart, E., Bullock, K., Gerber, G.K., Bry, L., Clish, C.B., Alm, E., Korzenik, J.R., Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 43 (2016), 1142–1153.
-
(2016)
Aliment. Pharmacol. Ther.
, vol.43
, pp. 1142-1153
-
-
Allegretti, J.R.1
Kearney, S.2
Li, N.3
Bogart, E.4
Bullock, K.5
Gerber, G.K.6
Bry, L.7
Clish, C.B.8
Alm, E.9
Korzenik, J.R.10
-
2
-
-
9644260361
-
Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice
-
Almind, K., Kahn, C.R., Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53 (2004), 3274–3285.
-
(2004)
Diabetes
, vol.53
, pp. 3274-3285
-
-
Almind, K.1
Kahn, C.R.2
-
3
-
-
85018198613
-
Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction
-
Bouter, K.E., van Raalte, D.H., Groen, A.K., Nieuwdorp, M., Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 152 (2017), 1671–1678.
-
(2017)
Gastroenterology
, vol.152
, pp. 1671-1678
-
-
Bouter, K.E.1
van Raalte, D.H.2
Groen, A.K.3
Nieuwdorp, M.4
-
4
-
-
85019668167
-
Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery
-
Brown, J.M., Hazen, S.L., Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J. Biol. Chem. 292 (2017), 8560–8568.
-
(2017)
J. Biol. Chem.
, vol.292
, pp. 8560-8568
-
-
Brown, J.M.1
Hazen, S.L.2
-
5
-
-
84941879755
-
Short-chain fatty acids in control of body weight and insulin sensitivity
-
Canfora, E.E., Jocken, J.W., Blaak, E.E., Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11 (2015), 577–591.
-
(2015)
Nat. Rev. Endocrinol.
, vol.11
, pp. 577-591
-
-
Canfora, E.E.1
Jocken, J.W.2
Blaak, E.E.3
-
6
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
Chang, P.V., Hao, L., Offermanns, S., Medzhitov, R., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 111 (2014), 2247–2252.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
Hao, L.2
Offermanns, S.3
Medzhitov, R.4
-
7
-
-
84991380438
-
Tryptophan Predicts the Risk for Future Type 2 Diabetes
-
Chen, T., Zheng, X., Ma, X., Bao, Y., Ni, Y., Hu, C., Rajani, C., Huang, F., Zhao, A., Jia, W., Jia, W., Tryptophan Predicts the Risk for Future Type 2 Diabetes. PLoS ONE, 11, 2016, e0162192.
-
(2016)
PLoS ONE
, vol.11
, pp. e0162192
-
-
Chen, T.1
Zheng, X.2
Ma, X.3
Bao, Y.4
Ni, Y.5
Hu, C.6
Rajani, C.7
Huang, F.8
Zhao, A.9
Jia, W.10
Jia, W.11
-
8
-
-
84865477413
-
Antibiotics in early life alter the murine colonic microbiome and adiposity
-
Cho, I., Yamanishi, S., Cox, L., Methé B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488 (2012), 621–626.
-
(2012)
Nature
, vol.488
, pp. 621-626
-
-
Cho, I.1
Yamanishi, S.2
Cox, L.3
Methé, B.A.4
Zavadil, J.5
Li, K.6
Gao, Z.7
Mahana, D.8
Raju, K.9
Teitler, I.10
-
9
-
-
84964670746
-
Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels
-
Dambrova, M., Latkovskis, G., Kuka, J., Strele, I., Konrade, I., Grinberga, S., Hartmane, D., Pugovics, O., Erglis, A., Liepinsh, E., Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels. Exp. Clin. Endocrinol. Diabetes 124 (2016), 251–256.
-
(2016)
Exp. Clin. Endocrinol. Diabetes
, vol.124
, pp. 251-256
-
-
Dambrova, M.1
Latkovskis, G.2
Kuka, J.3
Strele, I.4
Konrade, I.5
Grinberga, S.6
Hartmane, D.7
Pugovics, O.8
Erglis, A.9
Liepinsh, E.10
-
10
-
-
84892814749
-
Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
-
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., Mithieux, G., Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (2014), 84–96.
-
(2014)
Cell
, vol.156
, pp. 84-96
-
-
De Vadder, F.1
Kovatcheva-Datchary, P.2
Goncalves, D.3
Vinera, J.4
Zitoun, C.5
Duchampt, A.6
Bäckhed, F.7
Mithieux, G.8
-
11
-
-
85002595733
-
Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment
-
Ertunc, M.E., Hotamisligil, G.S., Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57 (2016), 2099–2114.
-
(2016)
J. Lipid Res.
, vol.57
, pp. 2099-2114
-
-
Ertunc, M.E.1
Hotamisligil, G.S.2
-
12
-
-
85002680324
-
Antibiotic effects on gut microbiota and metabolism are host dependent
-
Fujisaka, S., Ussar, S., Clish, C., Devkota, S., Dreyfuss, J.M., Sakaguchi, M., Soto, M., Konishi, M., Softic, S., Altindis, E., et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126 (2016), 4430–4443.
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 4430-4443
-
-
Fujisaka, S.1
Ussar, S.2
Clish, C.3
Devkota, S.4
Dreyfuss, J.M.5
Sakaguchi, M.6
Soto, M.7
Konishi, M.8
Softic, S.9
Altindis, E.10
-
13
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (2013), 446–450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
Takahashi, D.6
Nakanishi, Y.7
Uetake, C.8
Kato, K.9
Kato, T.10
-
14
-
-
79952535597
-
Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
-
Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C.L., Renooij, W., Murzilli, S., Klomp, L.W.J., Siersema, P.D., Schipper, M.E.I., Danese, S., et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60 (2011), 463–472.
-
(2011)
Gut
, vol.60
, pp. 463-472
-
-
Gadaleta, R.M.1
van Erpecum, K.J.2
Oldenburg, B.3
Willemsen, E.C.L.4
Renooij, W.5
Murzilli, S.6
Klomp, L.W.J.7
Siersema, P.D.8
Schipper, M.E.I.9
Danese, S.10
-
15
-
-
77956293821
-
α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population
-
Gall, W.E., Beebe, K., Lawton, K.A., Adam, K.-P., Mitchell, M.W., Nakhle, P.J., Ryals, J.A., Milburn, M.V., Nannipieri, M., Camastra, S., et al., RISC Study Group. α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE, 5, 2010, e10883.
-
(2010)
PLoS ONE
, vol.5
, pp. e10883
-
-
Gall, W.E.1
Beebe, K.2
Lawton, K.A.3
Adam, K.-P.4
Mitchell, M.W.5
Nakhle, P.J.6
Ryals, J.A.7
Milburn, M.V.8
Nannipieri, M.9
Camastra, S.10
-
16
-
-
84871454511
-
Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk
-
Holmes, E., Li, J.V., Marchesi, J.R., Nicholson, J.K., Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16 (2012), 559–564.
-
(2012)
Cell Metab.
, vol.16
, pp. 559-564
-
-
Holmes, E.1
Li, J.V.2
Marchesi, J.R.3
Nicholson, J.K.4
-
17
-
-
84893403953
-
High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects
-
Jakobsdottir, G., Xu, J., Molin, G., Ahrné S., Nyman, M., High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE, 8, 2013, e80476.
-
(2013)
PLoS ONE
, vol.8
, pp. e80476
-
-
Jakobsdottir, G.1
Xu, J.2
Molin, G.3
Ahrné, S.4
Nyman, M.5
-
18
-
-
84920401295
-
Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
-
Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., Cai, J., Qi, Y., Fang, Z.Z., Takahashi, S., et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125 (2015), 386–402.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 386-402
-
-
Jiang, C.1
Xie, C.2
Li, F.3
Zhang, L.4
Nichols, R.G.5
Krausz, K.W.6
Cai, J.7
Qi, Y.8
Fang, Z.Z.9
Takahashi, S.10
-
19
-
-
84919449455
-
Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice
-
Kameyama, K., Itoh, K., Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ. 29 (2014), 427–430.
-
(2014)
Microbes Environ.
, vol.29
, pp. 427-430
-
-
Kameyama, K.1
Itoh, K.2
-
20
-
-
84888053605
-
Review of the association between meat consumption and risk of colorectal cancer
-
Kim, E., Coelho, D., Blachier, F., Review of the association between meat consumption and risk of colorectal cancer. Nutr. Res. 33 (2013), 983–994.
-
(2013)
Nutr. Res.
, vol.33
, pp. 983-994
-
-
Kim, E.1
Coelho, D.2
Blachier, F.3
-
21
-
-
84878579044
-
The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
-
Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun., 4, 2013, 1829.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1829
-
-
Kimura, I.1
Ozawa, K.2
Inoue, D.3
Imamura, T.4
Kimura, K.5
Maeda, T.6
Terasawa, K.7
Kashihara, D.8
Hirano, K.9
Tani, T.10
-
22
-
-
84971519476
-
From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites
-
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F., From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165 (2016), 1332–1345.
-
(2016)
Cell
, vol.165
, pp. 1332-1345
-
-
Koh, A.1
De Vadder, F.2
Kovatcheva-Datchary, P.3
Bäckhed, F.4
-
23
-
-
84983523949
-
Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties
-
Kuda, O., Brezinova, M., Rombaldova, M., Slavikova, B., Posta, M., Beier, P., Janovska, P., Veleba, J., Kopecky, J. Jr., Kudova, E., et al. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes 65 (2016), 2580–2590.
-
(2016)
Diabetes
, vol.65
, pp. 2580-2590
-
-
Kuda, O.1
Brezinova, M.2
Rombaldova, M.3
Slavikova, B.4
Posta, M.5
Beier, P.6
Janovska, P.7
Veleba, J.8
Kopecky, J.9
Kudova, E.10
-
24
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.-M., Kennedy, S., et al., MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers. Nature 500 (2013), 541–546.
-
(2013)
Nature
, vol.500
, pp. 541-546
-
-
Le Chatelier, E.1
Nielsen, T.2
Qin, J.3
Prifti, E.4
Hildebrand, F.5
Falony, G.6
Almeida, M.7
Arumugam, M.8
Batto, J.-M.9
Kennedy, S.10
-
25
-
-
85005965070
-
The Human Intestinal Microbiome in Health and Disease
-
Lynch, S.V., Pedersen, O., The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 375 (2016), 2369–2379.
-
(2016)
N. Engl. J. Med.
, vol.375
, pp. 2369-2379
-
-
Lynch, S.V.1
Pedersen, O.2
-
26
-
-
84890185204
-
Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach
-
Menni, C., Fauman, E., Erte, I., Perry, J.R.B., Kastenmüller, G., Shin, S.-Y., Petersen, A.-K., Hyde, C., Psatha, M., Ward, K.J., et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62 (2013), 4270–4276.
-
(2013)
Diabetes
, vol.62
, pp. 4270-4276
-
-
Menni, C.1
Fauman, E.2
Erte, I.3
Perry, J.R.B.4
Kastenmüller, G.5
Shin, S.-Y.6
Petersen, A.-K.7
Hyde, C.8
Psatha, M.9
Ward, K.J.10
-
27
-
-
84955594102
-
Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism
-
Mikkelsen, K.H., Frost, M., Bahl, M.I., Licht, T.R., Jensen, U.S., Rosenberg, J., Pedersen, O., Hansen, T., Rehfeld, J.F., Holst, J.J., et al. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism. PLoS ONE, 10, 2015, e0142352.
-
(2015)
PLoS ONE
, vol.10
, pp. e0142352
-
-
Mikkelsen, K.H.1
Frost, M.2
Bahl, M.I.3
Licht, T.R.4
Jensen, U.S.5
Rosenberg, J.6
Pedersen, O.7
Hansen, T.8
Rehfeld, J.F.9
Holst, J.J.10
-
28
-
-
63449111894
-
A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
-
Newgard, C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., Lien, L.F., Haqq, A.M., Shah, S.H., Arlotto, M., Slentz, C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9 (2009), 311–326.
-
(2009)
Cell Metab.
, vol.9
, pp. 311-326
-
-
Newgard, C.B.1
An, J.2
Bain, J.R.3
Muehlbauer, M.J.4
Stevens, R.D.5
Lien, L.F.6
Haqq, A.M.7
Shah, S.H.8
Arlotto, M.9
Slentz, C.A.10
-
29
-
-
84898829898
-
Role of the microbiome in energy regulation and metabolism
-
Nieuwdorp, M., Gilijamse, P.W., Pai, N., Kaplan, L.M., Role of the microbiome in energy regulation and metabolism. Gastroenterology 146 (2014), 1525–1533.
-
(2014)
Gastroenterology
, vol.146
, pp. 1525-1533
-
-
Nieuwdorp, M.1
Gilijamse, P.W.2
Pai, N.3
Kaplan, L.M.4
-
30
-
-
84922879234
-
Genetic architecture of insulin resistance in the mouse
-
Parks, B.W., Sallam, T., Mehrabian, M., Psychogios, N., Hui, S.T., Norheim, F., Castellani, L.W., Rau, C.D., Pan, C., Phun, J., et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 21 (2015), 334–346.
-
(2015)
Cell Metab.
, vol.21
, pp. 334-346
-
-
Parks, B.W.1
Sallam, T.2
Mehrabian, M.3
Psychogios, N.4
Hui, S.T.5
Norheim, F.6
Castellani, L.W.7
Rau, C.D.8
Pan, C.9
Phun, J.10
-
31
-
-
84978081339
-
Human gut microbes impact host serum metabolome and insulin sensitivity
-
Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A., Forslund, K., Hildebrand, F., Prifti, E., Falony, G., et al., MetaHIT Consortium. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535 (2016), 376–381.
-
(2016)
Nature
, vol.535
, pp. 376-381
-
-
Pedersen, H.K.1
Gudmundsdottir, V.2
Nielsen, H.B.3
Hyotylainen, T.4
Nielsen, T.5
Jensen, B.A.6
Forslund, K.7
Hildebrand, F.8
Prifti, E.9
Falony, G.10
-
32
-
-
84973667684
-
Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome
-
Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F., Kibbey, R.G., Goodman, A.L., Shulman, G.I., Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534 (2016), 213–217.
-
(2016)
Nature
, vol.534
, pp. 213-217
-
-
Perry, R.J.1
Peng, L.2
Barry, N.A.3
Cline, G.W.4
Zhang, D.5
Cardone, R.L.6
Petersen, K.F.7
Kibbey, R.G.8
Goodman, A.L.9
Shulman, G.I.10
-
33
-
-
79953329970
-
Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans
-
Rhee, E.P., Cheng, S., Larson, M.G., Walford, G.A., Lewis, G.D., McCabe, E., Yang, E., Farrell, L., Fox, C.S., O'Donnell, C.J., et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 121 (2011), 1402–1411.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1402-1411
-
-
Rhee, E.P.1
Cheng, S.2
Larson, M.G.3
Walford, G.A.4
Lewis, G.D.5
McCabe, E.6
Yang, E.7
Farrell, L.8
Fox, C.S.9
O'Donnell, C.J.10
-
34
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 2013, 1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
Cheng, J.4
Duncan, A.E.5
Kau, A.L.6
Griffin, N.W.7
Lombard, V.8
Henrissat, B.9
Bain, J.R.10
-
35
-
-
0014303253
-
Alterations in the mouse cecum and its flora produced by antibacterial drugs
-
Savage, D.C., Dubos, R., Alterations in the mouse cecum and its flora produced by antibacterial drugs. J. Exp. Med. 128 (1968), 97–110.
-
(1968)
J. Exp. Med.
, vol.128
, pp. 97-110
-
-
Savage, D.C.1
Dubos, R.2
-
36
-
-
84990234576
-
Signals from the gut microbiota to distant organs in physiology and disease
-
Schroeder, B.O., Bäckhed, F., Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22 (2016), 1079–1089.
-
(2016)
Nat. Med.
, vol.22
, pp. 1079-1089
-
-
Schroeder, B.O.1
Bäckhed, F.2
-
37
-
-
32444432587
-
METLIN: a metabolite mass spectral database
-
Smith, C.A., O'Maille, G., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R., Custodio, D.E., Abagyan, R., Siuzdak, G., METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27 (2005), 747–751.
-
(2005)
Ther. Drug Monit.
, vol.27
, pp. 747-751
-
-
Smith, C.A.1
O'Maille, G.2
Want, E.J.3
Qin, C.4
Trauger, S.A.5
Brandon, T.R.6
Custodio, D.E.7
Abagyan, R.8
Siuzdak, G.9
-
38
-
-
84978062955
-
The microbiome in early life: implications for health outcomes
-
Tamburini, S., Shen, N., Wu, H.C., Clemente, J.C., The microbiome in early life: implications for health outcomes. Nat. Med. 22 (2016), 713–722.
-
(2016)
Nat. Med.
, vol.22
, pp. 713-722
-
-
Tamburini, S.1
Shen, N.2
Wu, H.C.3
Clemente, J.C.4
-
39
-
-
84876563088
-
Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
-
Tang, W.H.W., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y., Hazen, S.L., Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368 (2013), 1575–1584.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1575-1584
-
-
Tang, W.H.W.1
Wang, Z.2
Levison, B.S.3
Koeth, R.A.4
Britt, E.B.5
Fu, X.6
Wu, Y.7
Hazen, S.L.8
-
40
-
-
69149083245
-
TGR5-mediated bile acid sensing controls glucose homeostasis
-
Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10 (2009), 167–177.
-
(2009)
Cell Metab.
, vol.10
, pp. 167-177
-
-
Thomas, C.1
Gioiello, A.2
Noriega, L.3
Strehle, A.4
Oury, J.5
Rizzo, G.6
Macchiarulo, A.7
Yamamoto, H.8
Mataki, C.9
Pruzanski, M.10
-
41
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
-
Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., Gribble, F.M., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2012), 364–371.
-
(2012)
Diabetes
, vol.61
, pp. 364-371
-
-
Tolhurst, G.1
Heffron, H.2
Lam, Y.S.3
Parker, H.E.4
Habib, A.M.5
Diakogiannaki, E.6
Cameron, J.7
Grosse, J.8
Reimann, F.9
Gribble, F.M.10
-
42
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (2006), 1027–1031.
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
43
-
-
85018193359
-
Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome
-
Ussar, S., Griffin, N.W., Bezy, O., Fujisaka, S., Vienberg, S., Softic, S., Deng, L., Bry, L., Gordon, J.I., Kahn, C.R., Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab. 22 (2015), 516–530.
-
(2015)
Cell Metab.
, vol.22
, pp. 516-530
-
-
Ussar, S.1
Griffin, N.W.2
Bezy, O.3
Fujisaka, S.4
Vienberg, S.5
Softic, S.6
Deng, L.7
Bry, L.8
Gordon, J.I.9
Kahn, C.R.10
-
44
-
-
84991056627
-
Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome
-
Ussar, S., Fujisaka, S., Kahn, C.R., Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol. Metab. 5 (2016), 795–803.
-
(2016)
Mol. Metab.
, vol.5
, pp. 795-803
-
-
Ussar, S.1
Fujisaka, S.2
Kahn, C.R.3
-
45
-
-
79953737332
-
Metabolite profiles and the risk of developing diabetes
-
Wang, T.J., Larson, M.G., Vasan, R.S., Cheng, S., Rhee, E.P., McCabe, E., Lewis, G.D., Fox, C.S., Jacques, P.F., Fernandez, C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17 (2011), 448–453.
-
(2011)
Nat. Med.
, vol.17
, pp. 448-453
-
-
Wang, T.J.1
Larson, M.G.2
Vasan, R.S.3
Cheng, S.4
Rhee, E.P.5
McCabe, E.6
Lewis, G.D.7
Fox, C.S.8
Jacques, P.F.9
Fernandez, C.10
-
46
-
-
79953733693
-
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
-
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 (2011), 57–63.
-
(2011)
Nature
, vol.472
, pp. 57-63
-
-
Wang, Z.1
Klipfell, E.2
Bennett, B.J.3
Koeth, R.4
Levison, B.S.5
Dugar, B.6
Feldstein, A.E.7
Britt, E.B.8
Fu, X.9
Chung, Y.M.10
-
47
-
-
84885031125
-
2-Aminoadipic acid is a biomarker for diabetes risk
-
Wang, T.J., Ngo, D., Psychogios, N., Dejam, A., Larson, M.G., Vasan, R.S., Ghorbani, A., O'Sullivan, J., Cheng, S., Rhee, E.P., et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest. 123 (2013), 4309–4317.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 4309-4317
-
-
Wang, T.J.1
Ngo, D.2
Psychogios, N.3
Dejam, A.4
Larson, M.G.5
Vasan, R.S.6
Ghorbani, A.7
O'Sullivan, J.8
Cheng, S.9
Rhee, E.P.10
-
48
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C., Siuzdak, G., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106 (2009), 3698–3703.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
Schultz, P.G.4
Lesley, S.A.5
Peters, E.C.6
Siuzdak, G.7
-
49
-
-
85018384455
-
Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice
-
Yamada, H., Umemoto, T., Kakei, M., Momomura, S.I., Kawakami, M., Ishikawa, S.E., Hara, K., Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutr. Metab. (Lond.), 14, 2017, 33.
-
(2017)
Nutr. Metab. (Lond.)
, vol.14
, pp. 33
-
-
Yamada, H.1
Umemoto, T.2
Kakei, M.3
Momomura, S.I.4
Kawakami, M.5
Ishikawa, S.E.6
Hara, K.7
-
50
-
-
84879888338
-
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
-
Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499 (2013), 97–101.
-
(2013)
Nature
, vol.499
, pp. 97-101
-
-
Yoshimoto, S.1
Loo, T.M.2
Atarashi, K.3
Kanda, H.4
Sato, S.5
Oyadomari, S.6
Iwakura, Y.7
Oshima, K.8
Morita, H.9
Hattori, M.10
-
51
-
-
84977507546
-
Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions
-
Zhang, L.S., Davies, S.S., Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med., 8, 2016, 46.
-
(2016)
Genome Med.
, vol.8
, pp. 46
-
-
Zhang, L.S.1
Davies, S.S.2
|