메뉴 건너뛰기




Volumn 92, Issue 19, 2018, Pages

Herpes simplex virus 1 UL36USP antagonizes type I interferon-mediated antiviral innate immunity

Author keywords

HSV 1; IFNAR2; Type I IFN mediated signaling; UL36USP

Indexed keywords

ALPHA BETA INTERFERON RECEPTOR; ALPHA INTERFERON; BETA INTERFERON; IFNAR1 PROTEIN, HUMAN; IFNAR2 PROTEIN, HUMAN; INTERFERON REGULATORY FACTOR 9; JAK1 PROTEIN, HUMAN; JANUS KINASE 1; SMALL INTERFERING RNA; STAT PROTEIN; UL36 PROTEIN, HUMAN HERPESVIRUS 1; VIRAL PROTEIN;

EID: 85053421210     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.01161-18     Document Type: Article
Times cited : (46)

References (52)
  • 1
    • 33748475531 scopus 로고    scopus 로고
    • Type I interferon gene induction by the interferon regulatory factor family of transcription factors
    • Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360. https://doi.org/10.1016/j.immuni.2006.08.009.
    • (2006) Immunity , vol.25 , pp. 349-360
    • Honda, K.1    Takaoka, A.2    Taniguchi, T.3
  • 2
    • 33646377870 scopus 로고    scopus 로고
    • Interferon signalling network in innate defence
    • Takaoka A, Yanai H. 2006. Interferon signalling network in innate defence. Cell Microbiol 8:907–922. https://doi.org/10.1111/j.1462-5822.2006.00716.x.
    • (2006) Cell Microbiol , vol.8 , pp. 907-922
    • Takaoka, A.1    Yanai, H.2
  • 4
    • 84861670735 scopus 로고    scopus 로고
    • The interferons and their receptors–distribution and regulation
    • de Weerd NA, Nguyen T. 2012. The interferons and their receptors–distribution and regulation. Immunol Cell Biol 90:483–491. https://doi.org/10.1038/icb.2012.9.
    • (2012) Immunol Cell Biol , vol.90 , pp. 483-491
    • De Weerd, N.A.1    Nguyen, T.2
  • 5
    • 84856226112 scopus 로고    scopus 로고
    • Immunomodulatory functions of type I interferons
    • Gonzalez-Navajas JM, Lee J, David M, Raz E. 2012. Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135. https://doi.org/10.1038/nri3133.
    • (2012) Nat Rev Immunol , vol.12 , pp. 125-135
    • Gonzalez-Navajas, J.M.1    Lee, J.2    David, M.3    Raz, E.4
  • 6
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I- And type-II-interferon-mediated signalling
    • Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604.
    • (2005) Nat Rev Immunol , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 7
    • 85012168846 scopus 로고    scopus 로고
    • Canonical and non-canonical aspects of JAK-STAT signaling: Lessons from interferons for cytokine responses
    • Majoros A, Platanitis E, Kernbauer-Holzl E, Rosebrock F, Muller M, Decker T. 2017. Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immunol 8:29. https://doi.org/10.3389/fimmu.2017.00029.
    • (2017) Front Immunol , vol.8 , pp. 29
    • Majoros, A.1    Platanitis, E.2    Kernbauer-Holzl, E.3    Rosebrock, F.4    Muller, M.5    Decker, T.6
  • 8
    • 84863115198 scopus 로고    scopus 로고
    • Intrinsic antiviral immunity
    • Yan N, Chen ZJ. 2012. Intrinsic antiviral immunity. Nat Immunol 13: 214–222. https://doi.org/10.1038/ni.2229.
    • (2012) Nat Immunol , vol.13 , pp. 214-222
    • Yan, N.1    Chen, Z.J.2
  • 9
    • 85037635145 scopus 로고    scopus 로고
    • Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism
    • Nan Y, Wu C, Zhang YJ. 2017. Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism. Front Immunol 8:1758. https://doi.org/10.3389/fimmu.2017.01758.
    • (2017) Front Immunol , vol.8 , pp. 1758
    • Nan, Y.1    Wu, C.2    Zhang, Y.J.3
  • 11
    • 0028341110 scopus 로고
    • Molecular phylogeny of the alphaherpesviri-nae subfamily and a proposed evolutionary timescale
    • McGeoch DJ, Cook S. 1994. Molecular phylogeny of the alphaherpesviri-nae subfamily and a proposed evolutionary timescale. J Mol Biol 238: 9–22. https://doi.org/10.1006/jmbi.1994.1264.
    • (1994) J Mol Biol , vol.238 , pp. 9-22
    • McGeoch, D.J.1    Cook, S.2
  • 12
    • 70649086100 scopus 로고    scopus 로고
    • Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation
    • Johnson KE, Knipe DM. 2010. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology 396:21–29. https://doi.org/10.1016/j.virol.2009.09.021.
    • (2010) Virology , vol.396 , pp. 21-29
    • Johnson, K.E.1    Knipe, D.M.2
  • 13
    • 1842484070 scopus 로고    scopus 로고
    • Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites
    • Chee AV, Roizman B. 2004. Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol 78: 4185–4196. https://doi.org/10.1128/JVI.78.8.4185-4196.2004.
    • (2004) J Virol , vol.78 , pp. 4185-4196
    • Chee, A.V.1    Roizman, B.2
  • 14
    • 70249096342 scopus 로고    scopus 로고
    • HSV-1-induced SOCS-1 expression in keratinocytes: Use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion
    • Frey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM, Johnson HM, Bigley NJ. 2009. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J Immunol 183:1253–1262. https://doi.org/10.4049/jimmunol.0900570.
    • (2009) J Immunol , vol.183 , pp. 1253-1262
    • Frey, K.G.1    Ahmed, C.M.2    Dabelic, R.3    Jager, L.D.4    Noon-Song, E.N.5    Haider, S.M.6    Johnson, H.M.7    Bigley, N.J.8
  • 15
    • 23744434659 scopus 로고    scopus 로고
    • A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae
    • Kattenhorn LM, Korbel GA, Kessler BM, Spooner E, Ploegh HL. 2005. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19:547–557. https://doi.org/10.1016/j.molcel.2005.07.003.
    • (2005) Mol Cell , vol.19 , pp. 547-557
    • Kattenhorn, L.M.1    Korbel, G.A.2    Kessler, B.M.3    Spooner, E.4    Ploegh, H.L.5
  • 16
    • 80052289989 scopus 로고    scopus 로고
    • Autocatalytic activity of the ubiquitin-specific protease domain of herpes simplex virus 1 VP1-2
    • Bolstad M, Abaitua F, Crump CM, O’Hare P. 2011. Autocatalytic activity of the ubiquitin-specific protease domain of herpes simplex virus 1 VP1-2. J Virol 85:8738 – 8751. https://doi.org/10.1128/JVI.00798-11.
    • (2011) J Virol , vol.85 , pp. 8738-8751
    • Bolstad, M.1    Abaitua, F.2    Crump, C.M.3    O’Hare, P.4
  • 17
    • 84886877704 scopus 로고    scopus 로고
    • Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3
    • Wang S, Wang K, Li J, Zheng C. 2013. Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J Virol 87:11851–11860. https://doi.org/10.1128/JVI.01211-13.
    • (2013) J Virol , vol.87 , pp. 11851-11860
    • Wang, S.1    Wang, K.2    Li, J.3    Zheng, C.4
  • 18
    • 84969221169 scopus 로고    scopus 로고
    • No love lost between viruses and interferons
    • Fensterl V, Chattopadhyay S, Sen GC. 2015. No love lost between viruses and interferons. Annu Rev Virol 2:549–572. https://doi.org/10.1146/annurev-virology-100114-055249.
    • (2015) Annu Rev Virol , vol.2 , pp. 549-572
    • Fensterl, V.1    Chattopadhyay, S.2    Sen, G.C.3
  • 19
    • 84982131397 scopus 로고    scopus 로고
    • Evasion of host antiviral innate immunity by HSV-1, an update
    • Su C, Zhan G, Zheng C. 2016. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 13:38. https://doi.org/10.1186/s12985-016-0495-5.
    • (2016) Virol J , vol.13 , pp. 38
    • Su, C.1    Zhan, G.2    Zheng, C.3
  • 20
    • 58149086118 scopus 로고    scopus 로고
    • Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells
    • Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, Vuorinen T, Hukkanen V. 2008. Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J 5:140. https://doi.org/10.1186/1743-422X-5-140.
    • (2008) Virol J , vol.5 , pp. 140
    • Peri, P.1    Mattila, R.K.2    Kantola, H.3    Broberg, E.4    Karttunen, H.S.5    Waris, M.6    Vuorinen, T.7    Hukkanen, V.8
  • 21
    • 84887145383 scopus 로고    scopus 로고
    • Herpes simplex virus 1 serine/ threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production
    • Wang S, Wang K, Lin R, Zheng C. 2013. Herpes simplex virus 1 serine/ threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol 87:12814–12827. https://doi.org/10.1128/JVI.02355-13.
    • (2013) J Virol , vol.87 , pp. 12814-12827
    • Wang, S.1    Wang, K.2    Lin, R.3    Zheng, C.4
  • 22
    • 3543054546 scopus 로고    scopus 로고
    • Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production
    • Melroe GT, DeLuca NA, Knipe DM. 2004. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 78:8411–8420. https://doi.org/10.1128/JVI.78.16.8411-8420.2004.
    • (2004) J Virol , vol.78 , pp. 8411-8420
    • Melroe, G.T.1    DeLuca, N.A.2    Knipe, D.M.3
  • 23
    • 33947627724 scopus 로고    scopus 로고
    • Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction
    • Melroe GT, Silva L, Schaffer PA, Knipe DM. 2007. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: potential role in blocking IFN-beta induction. Virology 360:305–321. https://doi.org/10.1016/j.virol.2006.10.028.
    • (2007) Virology , vol.360 , pp. 305-321
    • Melroe, G.T.1    Silva, L.2    Schaffer, P.A.3    Knipe, D.M.4
  • 24
    • 84861320795 scopus 로고    scopus 로고
    • Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5
    • Xing J, Wang S, Lin R, Mossman KL, Zheng C. 2012. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5. J Virol 86:3528–3540. https://doi.org/10.1128/JVI.06713-11.
    • (2012) J Virol , vol.86 , pp. 3528-3540
    • Xing, J.1    Wang, S.2    Lin, R.3    Mossman, K.L.4    Zheng, C.5
  • 25
    • 85014083284 scopus 로고    scopus 로고
    • Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway via its virion host shutoff protein, UL41
    • Su C, Zheng C. 2017. Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway via its virion host shutoff protein, UL41. J Virol 91:e02414-16. https://doi.org/10.1128/JVI.02414-16.
    • (2017) J Virol , vol.91 , pp. e02414-e02416
    • Su, C.1    Zheng, C.2
  • 26
    • 84883292814 scopus 로고    scopus 로고
    • Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP
    • Xing J, Ni L, Wang S, Wang K, Lin R, Zheng C. 2013. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol 87:9788–9801. https://doi.org/10.1128/JVI.01440-13.
    • (2013) J Virol , vol.87 , pp. 9788-9801
    • Xing, J.1    Ni, L.2    Wang, S.3    Wang, K.4    Lin, R.5    Zheng, C.6
  • 27
    • 84907426399 scopus 로고    scopus 로고
    • Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41
    • Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C. 2014. Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J Virol 88:12163–12166. https://doi.org/10.1128/JVI.01380-14.
    • (2014) J Virol , vol.88 , pp. 12163-12166
    • Shen, G.1    Wang, K.2    Wang, S.3    Cai, M.4    Li, M.L.5    Zheng, C.6
  • 28
    • 84949994196 scopus 로고    scopus 로고
    • Herpes simplex virus 1 UL41 protein abrogates the antiviral activity of hZAP by degrading its mRNA
    • Su C, Zhang J, Zheng C. 2015. Herpes simplex virus 1 UL41 protein abrogates the antiviral activity of hZAP by degrading its mRNA. Virol J 12:203. https://doi.org/10.1186/s12985-015-0433-y.
    • (2015) Virol J , vol.12 , pp. 203
    • Su, C.1    Zhang, J.2    Zheng, C.3
  • 29
    • 84888048397 scopus 로고    scopus 로고
    • Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity
    • Zenner HL, Mauricio R, Banting G, Crump CM. 2013. Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity. J Virol 87:13115–13123. https://doi.org/10.1128/JVI.02167-13.
    • (2013) J Virol , vol.87 , pp. 13115-13123
    • Zenner, H.L.1    Mauricio, R.2    Banting, G.3    Crump, C.M.4
  • 30
    • 85001103551 scopus 로고    scopus 로고
    • Herpes simplex virus 1 tegument protein UL41 counteracts IFIT3 antiviral innate immunity
    • Jiang Z, Su C, Zheng C. 2016. Herpes simplex virus 1 tegument protein UL41 counteracts IFIT3 antiviral innate immunity. J Virol 90: 11056–11061. https://doi.org/10.1128/JVI.01672-16.
    • (2016) J Virol , vol.90 , pp. 11056-11061
    • Jiang, Z.1    Su, C.2    Zheng, C.3
  • 31
    • 85017352102 scopus 로고    scopus 로고
    • Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein
    • You H, Yuan H, Fu W, Su C, Wang W, Cheng T, Zheng C. 2017. Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein. Antiviral Res 143:69–73. https://doi.org/10.1016/j.antiviral.2017.04.004.
    • (2017) Antiviral Res , vol.143 , pp. 69-73
    • You, H.1    Yuan, H.2    Fu, W.3    Su, C.4    Wang, W.5    Cheng, T.6    Zheng, C.7
  • 32
    • 42649143255 scopus 로고    scopus 로고
    • Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling
    • Johnson KE, Song B, Knipe DM. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology 374: 487–494. https://doi.org/10.1016/j.virol.2008.01.001.
    • (2008) Virology , vol.374 , pp. 487-494
    • Johnson, K.E.1    Song, B.2    Knipe, D.M.3
  • 33
    • 32944480977 scopus 로고    scopus 로고
    • The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport
    • Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, Smith GA. 2006. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80:201–209. https://doi.org/10.1128/JVI.80.1.201-209.2006.
    • (2006) J Virol , vol.80 , pp. 201-209
    • Luxton, G.W.1    Lee, J.I.2    Haverlock-Moyns, S.3    Schober, J.M.4    Smith, G.A.5
  • 34
    • 84872620818 scopus 로고    scopus 로고
    • Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment
    • Sandbaumhuter M, Dohner K, Schipke J, Binz A, Pohlmann A, Sodeik B, Bauerfeind R. 2013. Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment. Cell Microbiol 15:248–269. https://doi.org/10.1111/cmi.12075.
    • (2013) Cell Microbiol , vol.15 , pp. 248-269
    • Sandbaumhuter, M.1    Dohner, K.2    Schipke, J.3    Binz, A.4    Pohlmann, A.5    Sodeik, B.6    Bauerfeind, R.7
  • 35
    • 84866184239 scopus 로고    scopus 로고
    • A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore
    • Abaitua F, Hollinshead M, Bolstad M, Crump CM, O’Hare P. 2012. A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J Virol 86:8998–9014. https://doi.org/10.1128/JVI.01209-12.
    • (2012) J Virol , vol.86 , pp. 8998-9014
    • Abaitua, F.1    Hollinshead, M.2    Bolstad, M.3    Crump, C.M.4    O’Hare, P.5
  • 36
    • 58149393193 scopus 로고    scopus 로고
    • Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1
    • Roberts AP, Abaitua F, O’Hare P, McNab D, Rixon FJ, Pasdeloup D. 2009. Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83:105–116. https://doi.org/10.1128/JVI.01032-08.
    • (2009) J Virol , vol.83 , pp. 105-116
    • Roberts, A.P.1    Abaitua, F.2    O’Hare, P.3    McNab, D.4    Rixon, F.J.5    Pasdeloup, D.6
  • 37
    • 0034466764 scopus 로고    scopus 로고
    • A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells
    • Desai PJ. 2000. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74:11608–11618. https://doi.org/10 .1128/JVI.74.24.11608-11618.2000.
    • (2000) J Virol , vol.74 , pp. 11608-11618
    • Desai, P.J.1
  • 38
    • 70450176023 scopus 로고    scopus 로고
    • Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells
    • Kim ET, Oh SE, Lee YO, Gibson W, Ahn JH. 2009. Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. J Virol 83:12046–12056. https://doi.org/10.1128/JVI.00411-09.
    • (2009) J Virol , vol.83 , pp. 12046-12056
    • Kim, E.T.1    Oh, S.E.2    Lee, Y.O.3    Gibson, W.4    Ahn, J.H.5
  • 39
    • 85013984217 scopus 로고    scopus 로고
    • Herpes simplex virus 1 ubiquitin-specific protease UL36 abrogates NF-kappaB activation in DNA sensing signal pathway
    • Ye R, Su C, Xu H, Zheng C. 2017. Herpes simplex virus 1 ubiquitin-specific protease UL36 abrogates NF-kappaB activation in DNA sensing signal pathway. J Virol 91:e02417-16. https://doi.org/10.1128/JVI.02417-16.
    • (2017) J Virol , vol.91 , pp. e02417-e02516
    • Ye, R.1    Su, C.2    Xu, H.3    Zheng, C.4
  • 40
    • 0029053372 scopus 로고
    • Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity
    • Symons JA, Alcami A, Smith GL. 1995. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560. https://doi.org/10.1016/0092-8674(95)90076-4.
    • (1995) Cell , vol.81 , pp. 551-560
    • Symons, J.A.1    Alcami, A.2    Smith, G.L.3
  • 41
    • 0034467234 scopus 로고    scopus 로고
    • The vaccinia virus soluble alpha/ beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN
    • Alcami A, Symons JA, Smith GL. 2000. The vaccinia virus soluble alpha/ beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239. https://doi.org/10.1128/JVI.74.23.11230-11239.2000.
    • (2000) J Virol , vol.74 , pp. 11230-11239
    • Alcami, A.1    Symons, J.A.2    Smith, G.L.3
  • 42
    • 0037293234 scopus 로고    scopus 로고
    • Measles virus suppresses interferon-alpha signaling pathway: Suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex
    • Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, Fujii N. 2003. Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 306:135–146. https://doi.org/10.1016/S0042-6822(02)00026-0.
    • (2003) Virology , vol.306 , pp. 135-146
    • Yokota, S.1    Saito, H.2    Kubota, T.3    Yokosawa, N.4    Amano, K.5    Fujii, N.6
  • 43
    • 65349138164 scopus 로고    scopus 로고
    • A Kaposi’s sarcoma-associated herpesvirus protein that forms inhibitory complexes with type I interferon receptor subunits, Jak and STAT proteins, and blocks interferon-mediated signal transduction
    • Bisson SA, Page AL, Ganem D. 2009. A Kaposi’s sarcoma-associated herpesvirus protein that forms inhibitory complexes with type I interferon receptor subunits, Jak and STAT proteins, and blocks interferon-mediated signal transduction. J Virol 83:5056–5066. https://doi.org/10.1128/JVI.02516-08.
    • (2009) J Virol , vol.83 , pp. 5056-5066
    • Bisson, S.A.1    Page, A.L.2    Ganem, D.3
  • 44
    • 70449110086 scopus 로고    scopus 로고
    • The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation
    • Shah KM, Stewart SE, Wei W, Woodman CB, O’Neil JD, Dawson CW, Young LS. 2009. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 28:3903–3914. https://doi.org/10.1038/onc.2009.249.
    • (2009) Oncogene , vol.28 , pp. 3903-3914
    • Shah, K.M.1    Stewart, S.E.2    Wei, W.3    Woodman, C.B.4    O’Neil, J.D.5    Dawson, C.W.6    Young, L.S.7
  • 45
    • 84961134192 scopus 로고    scopus 로고
    • Hemagglutinin of influenza A virus antagonizes type I interferon (IFN) responses by inducing degradation of type I IFN receptor 1
    • Xia C, Vijayan M, Pritzl CJ, Fuchs SY, McDermott AB, Hahm B. 2015. Hemagglutinin of influenza A virus antagonizes type I interferon (IFN) responses by inducing degradation of type I IFN receptor 1. J Virol 90:2403–2417. https://doi.org/10.1128/JVI.02749-15.
    • (2015) J Virol , vol.90 , pp. 2403-2417
    • Xia, C.1    Vijayan, M.2    Pritzl, C.J.3    Fuchs, S.Y.4    McDermott, A.B.5    Hahm, B.6
  • 46
    • 85031119584 scopus 로고    scopus 로고
    • Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response
    • Zhang R, Xu A, Qin C, Zhang Q, Chen S, Lang Y, Wang M, Li C, Feng W, Zhang R, Jiang Z, Tang J. 2017. Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response. J Virol 91:e01148-17. https://doi.org/10.1128/JVI.01148-17.
    • (2017) J Virol , vol.91 , pp. e01148-e01217
    • Zhang, R.1    Xu, A.2    Qin, C.3    Zhang, Q.4    Chen, S.5    Lang, Y.6    Wang, M.7    Li, C.8    Feng, W.9    Zhang, R.10    Jiang, Z.11    Tang, J.12
  • 47
    • 78951485032 scopus 로고    scopus 로고
    • Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL205
    • Xing J, Wang S, Lin F, Pan W, Hu CD, Zheng C. 2011. Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL205. J Virol 85:1881–1886.
    • (2011) J Virol , vol.85 , pp. 1881-1886
    • Xing, J.1    Wang, S.2    Lin, F.3    Pan, W.4    Hu, C.D.5    Zheng, C.6
  • 48
    • 4844219763 scopus 로고    scopus 로고
    • Regulated proteolysis of the IFNaR2 subunit of the interferon-alpha receptor
    • Saleh AZ, Fang AT, Arch AE, Neupane D, El Fiky A, Krolewski JJ. 2004. Regulated proteolysis of the IFNaR2 subunit of the interferon-alpha receptor. Oncogene 23:7076–7086. https://doi.org/10.1038/sj.onc.1207955.
    • (2004) Oncogene , vol.23 , pp. 7076-7086
    • Saleh, A.Z.1    Fang, A.T.2    Arch, A.E.3    Neupane, D.4    El Fiky, A.5    Krolewski, J.J.6
  • 50
    • 33644850482 scopus 로고    scopus 로고
    • Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20
    • Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, Hiscott J. 2006. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281: 2095–2103. https://doi.org/10.1074/jbc.M510326200.
    • (2006) J Biol Chem , vol.281 , pp. 2095-2103
    • Lin, R.1    Yang, L.2    Nakhaei, P.3    Sun, Q.4    Sharif-Askari, E.5    Julkunen, I.6    Hiscott, J.7
  • 51
    • 80055115107 scopus 로고    scopus 로고
    • Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3
    • Zhu H, Zheng C, Xing J, Wang S, Li S, Lin R, Mossman KL. 2011. Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol 85:11079 –11089. https://doi.org/10.1128/JVI.05098-11.
    • (2011) J Virol , vol.85 , pp. 11079-11089
    • Zhu, H.1    Zheng, C.2    Xing, J.3    Wang, S.4    Li, S.5    Lin, R.6    Mossman, K.L.7
  • 52
    • 0029991350 scopus 로고    scopus 로고
    • Transfecting mammalian cells: Optimization of critical parameters affecting calcium-phosphate precipitate formation
    • Jordan M, Schallhorn A, Wurm FM. 1996. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601. https://doi.org/10.1093/nar/24.4.596.
    • (1996) Nucleic Acids Res , vol.24 , pp. 596-601
    • Jordan, M.1    Schallhorn, A.2    Wurm, F.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.