메뉴 건너뛰기




Volumn 49, Issue , 2018, Pages 153-163

Directed strain evolution restructures metabolism for 1-butanol production in minimal media

Author keywords

[No Author keywords available]

Indexed keywords

CYTOLOGY; ENZYMES; ESCHERICHIA COLI; MOLECULAR BIOLOGY; PHYSIOLOGY; RATIONAL FUNCTIONS; REPAIR;

EID: 85051681740     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2018.08.004     Document Type: Article
Times cited : (26)

References (49)
  • 1
    • 0034703060 scopus 로고    scopus 로고
    • ‘Global gene expression profiling in Escherichia coli K12: the effects of integration host factor’
    • Arfin, S.M., et al. ‘Global gene expression profiling in Escherichia coli K12: the effects of integration host factor’. J. Biol. Chem. 275:38 (2000), 29672–29684, 10.1074/jbc.M002247200.
    • (2000) J. Biol. Chem. , vol.275 , Issue.38 , pp. 29672-29684
    • Arfin, S.M.1
  • 2
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi, S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:6 (2008), 305–311, 10.1016/j.ymben.2007.08.003.
    • (2008) Metab. Eng. , vol.10 , Issue.6 , pp. 305-311
    • Atsumi, S.1
  • 3
    • 78650647970 scopus 로고    scopus 로고
    • ‘Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
    • Atsumi, S., et al. ‘Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol. Nat. Publ. Group, 6(449), 2010, 449, 10.1038/msb.2010.98.
    • (2010) Mol. Syst. Biol. Nat. Publ. Group , vol.6 , Issue.449 , pp. 449
    • Atsumi, S.1
  • 4
    • 0347544012 scopus 로고    scopus 로고
    • Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor
    • Beg, Q.K., Sahai, V., Gupta, R., Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39:2 (2003), 203–209.
    • (2003) Process Biochem. , vol.39 , Issue.2 , pp. 203-209
    • Beg, Q.K.1    Sahai, V.2    Gupta, R.3
  • 5
    • 84871009667 scopus 로고    scopus 로고
    • Manipulation of the anoxic metabolism in Escherichia coli by ArcB deletion variants in the ArcBA two-component system
    • Bidart, G.N., et al. Manipulation of the anoxic metabolism in Escherichia coli by ArcB deletion variants in the ArcBA two-component system. Appl. Environ. Microbiol. 78:24 (2012), 8784–8794, 10.1128/AEM.02558-12.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.24 , pp. 8784-8794
    • Bidart, G.N.1
  • 6
    • 84896845939 scopus 로고    scopus 로고
    • The predictability of molecular evolution during functional innovation
    • Blank, D., et al. The predictability of molecular evolution during functional innovation. Proc. Natl. Acad. Sci. USA 111:8 (2014), 3044–3049, 10.1073/pnas.1318797111.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , Issue.8 , pp. 3044-3049
    • Blank, D.1
  • 7
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock: A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization. doi: 〈〉.
    • Burgard, A.P., Pharkya, P., Maranas, C.D., 2003. OptKnock: A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization. doi: 〈 http://dx.doi.org/10.1002/bit.10803〉.
    • (2003)
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 8
    • 84862506964 scopus 로고    scopus 로고
    • A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
    • Cingolani, P., et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 2012, 10.4161/fly.19695.
    • (2012) Fly , vol.6 , Issue.2
    • Cingolani, P.1
  • 9
    • 78650546051 scopus 로고    scopus 로고
    • RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media
    • Conrad, T.M., et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. USA 107:47 (2010), 20500–20505, 10.1073/pnas.0911253107.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.47 , pp. 20500-20505
    • Conrad, T.M.1
  • 10
    • 0034977941 scopus 로고    scopus 로고
    • Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment
    • Cooper, V.S., Bennett, A.F., Lenski, R.E., Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55:5 (2001), 889–896, 10.1111/j.0014-3820.2001.tb00606.x.
    • (2001) Evolution , vol.55 , Issue.5 , pp. 889-896
    • Cooper, V.S.1    Bennett, A.F.2    Lenski, R.E.3
  • 11
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko, K.A., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:12 (2000), 6640–6645, 10.1073/pnas.120163297.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , Issue.12 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 12
    • 0015959011 scopus 로고
    • Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies
    • Degnen, G.E., Cox, E.C., Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies. J. Bacteriol. 117:2 (1974), 477–487.
    • (1974) J. Bacteriol. , vol.117 , Issue.2 , pp. 477-487
    • Degnen, G.E.1    Cox, E.C.2
  • 13
    • 49249118741 scopus 로고    scopus 로고
    • Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan
    • Desai, K.M., et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J. 41:3 (2008), 266–273, 10.1016/j.bej.2008.05.009.
    • (2008) Biochem. Eng. J. , vol.41 , Issue.3 , pp. 266-273
    • Desai, K.M.1
  • 14
    • 0033917198 scopus 로고    scopus 로고
    • Plasmid effects on Escherichia coli metabolism
    • Diaz Ricci, J.C., Hernández, M.E., Plasmid effects on Escherichia coli metabolism. Crit. Rev. Biotechnol. 20:2 (2000), 79–108, 10.1080/07388550008984167.
    • (2000) Crit. Rev. Biotechnol. , vol.20 , Issue.2 , pp. 79-108
    • Diaz Ricci, J.C.1    Hernández, M.E.2
  • 15
    • 84895827954 scopus 로고    scopus 로고
    • Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites
    • Espah Borujeni, A., Channarasappa, A.S., Salis, H.M., Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42:4 (2014), 2646–2659, 10.1093/nar/gkt1139.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.4 , pp. 2646-2659
    • Espah Borujeni, A.1    Channarasappa, A.S.2    Salis, H.M.3
  • 16
    • 85051678110 scopus 로고    scopus 로고
    • Osborn, M., M. T, C. Plasmid replication and copy number control. The horizontal Gene Pool: Bacterial Plasmids and Gene Spread.
    • Espinosa, M., Cohen, S., Couturier, M., Del Solar, G., Diaz-Orejas, R., Giraldo, R., Janniere, L., Miller, C., Osborn, M., M. T, C., 2000. Plasmid replication and copy number control. The horizontal Gene Pool: Bacterial Plasmids and Gene Spread.
    • (2000)
    • Espinosa, M.1    Cohen, S.2    Couturier, M.3    Del Solar, G.4    Diaz-Orejas, R.5    Giraldo, R.6    Janniere, L.7    Miller, C.8
  • 17
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong, S.S., et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91:5 (2005), 643–648, 10.1002/bit.20542.
    • (2005) Biotechnol. Bioeng. , vol.91 , Issue.5 , pp. 643-648
    • Fong, S.S.1
  • 18
    • 85051654282 scopus 로고    scopus 로고
    • no date. Developing chemically defined media through DOE: complete optimization with increased protein production in less than 8 months. Cell Technol. Cell Products,. doi: 〈〉.
    • Hammett, K., et al., no date. Developing chemically defined media through DOE: complete optimization with increased protein production in less than 8 months. Cell Technol. Cell Products, pp. 683–691. doi: 〈 http://dx.doi.org/10.1007/978-1-4020-5476-1_123〉.
    • Hammett, K.1
  • 19
    • 85047391306 scopus 로고    scopus 로고
    • ‘Ribulose monophosphate shunt provides nearly all biomass and energy required for growth of E. coli
    • He, H., et al. ‘Ribulose monophosphate shunt provides nearly all biomass and energy required for growth of E. coli. ACS Synth. Biol., 2018, 10.1021/acssynbio.8b00093.
    • (2018) ACS Synth. Biol.
    • He, H.1
  • 20
    • 0023135293 scopus 로고
    • Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum)
    • (doi: 16347317)
    • Hiu, S.F., et al. Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 53:4 (1987), 697–703 (doi: 16347317).
    • (1987) Appl. Environ. Microbiol. , vol.53 , Issue.4 , pp. 697-703
    • Hiu, S.F.1
  • 21
    • 79953889249 scopus 로고    scopus 로고
    • Conversion of proteins into biofuels by engineering nitrogen flux
    • Huo, Y.-X., et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 29:4 (2011), 346–351, 10.1038/nbt.1789.
    • (2011) Nat. Biotechnol. , vol.29 , Issue.4 , pp. 346-351
    • Huo, Y.-X.1
  • 22
    • 41249084917 scopus 로고    scopus 로고
    • Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
    • Jantama, K., et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99:5 (2008), 1140–1153, 10.1002/bit.21694.
    • (2008) Biotechnol. Bioeng. , vol.99 , Issue.5 , pp. 1140-1153
    • Jantama, K.1
  • 23
    • 77954265373 scopus 로고    scopus 로고
    • Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-l,2-propanediol
    • Lee, D.H., Palsson, B.O., Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-l,2-propanediol. Appl. Environ. Microbiol. 76:13 (2010), 4158–4168, 10.1128/AEM.00373-10.
    • (2010) Appl. Environ. Microbiol. , vol.76 , Issue.13 , pp. 4158-4168
    • Lee, D.H.1    Palsson, B.O.2
  • 24
    • 85044859974 scopus 로고    scopus 로고
    • Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism
    • Lin, P.P., et al. Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism. Proc. Natl. Acad. Sci. USA 115:14 (2018), 3538–3546.
    • (2018) Proc. Natl. Acad. Sci. USA , vol.115 , Issue.14 , pp. 3538-3546
    • Lin, P.P.1
  • 25
    • 18144396807 scopus 로고    scopus 로고
    • Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli
    • Liu, M. et, et al. Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol. Chem. 280:16 (2005), 15921–15927, 10.1074/jbc.M414050200.
    • (2005) J. Biol. Chem. , vol.280 , Issue.16 , pp. 15921-15927
    • Liu, M.E.1
  • 26
    • 85051637315 scopus 로고
    • Deoxyribonucleaic acid polymerase III of Escherichia coli
    • Livingston, D., Deoxyribonucleaic acid polymerase III of Escherichia coli. J. Biol. Chem. 250:2 (1975), 489–497.
    • (1975) J. Biol. Chem. , vol.250 , Issue.2 , pp. 489-497
    • Livingston, D.1
  • 27
    • 84856224288 scopus 로고    scopus 로고
    • Central carbon metabolism influences fidelity of DNA replication in Escherichia coli
    • Maciag, M., et al. Central carbon metabolism influences fidelity of DNA replication in Escherichia coli. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 731:1–2 (2012), 99–106, 10.1016/j.mrfmmm.2011.12.005.
    • (2012) Mutat. Res. - Fundam. Mol. Mech. Mutagen. , vol.731 , Issue.1-2 , pp. 99-106
    • Maciag, M.1
  • 28
    • 0021104573 scopus 로고
    • A dominant (mutD5) and a recessive (dnaQ49) mutator of Escherichia coli
    • Maruyama, M., et al. A dominant (mutD5) and a recessive (dnaQ49) mutator of Escherichia coli. J. Mol. Biol. 167:4 (1983), 757–771, 10.1016/S0022-2836(83)80109-0.
    • (1983) J. Mol. Biol. , vol.167 , Issue.4 , pp. 757-771
    • Maruyama, M.1
  • 29
    • 0027266028 scopus 로고
    • The pcnB Gene of Escherichia coli, which is required for ColEl copy number maintenance, is dispensable
    • Masters, M., et al. The pcnB Gene of Escherichia coli, which is required for ColEl copy number maintenance, is dispensable. J. Bacteriol. 175:14 (1993), 4405–4413.
    • (1993) J. Bacteriol. , vol.175 , Issue.14 , pp. 4405-4413
    • Masters, M.1
  • 30
    • 77956295988 scopus 로고    scopus 로고
    • The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna, A., et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20 (2010), 1297–1303, 10.1101/gr.107524.110.20.
    • (2010) Genome Res. , vol.20 , pp. 1297-1303
    • McKenna, A.1
  • 31
    • 85045762472 scopus 로고    scopus 로고
    • Methanol-essential growth of Escherichia coli
    • Meyer, F., et al. Methanol-essential growth of Escherichia coli. Nat. Commun., 9, 2018, 10.1038/s41467-018-03937-y.
    • (2018) Nat. Commun. , vol.9
    • Meyer, F.1
  • 32
    • 85008192136 scopus 로고    scopus 로고
    • Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution
    • Mundhada, H., et al. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metab. Eng. 39 (2017), 141–150, 10.1016/j.ymben.2016.11.008.
    • (2017) Metab. Eng. , vol.39 , pp. 141-150
    • Mundhada, H.1
  • 33
    • 85021344456 scopus 로고    scopus 로고
    • Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli
    • Nitta, K., et al. Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. J. Biosci. Bioeng. 124 (2017), 498–505, 10.1016/j.jbiosc.2017.05.015.
    • (2017) J. Biosci. Bioeng. , vol.124 , pp. 498-505
    • Nitta, K.1
  • 34
    • 85017430967 scopus 로고    scopus 로고
    • Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli
    • Ohtake, T., et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab. Eng. 41 (2017), 135–143, 10.1016/j.ymben.2017.04.003.
    • (2017) Metab. Eng. , vol.41 , pp. 135-143
    • Ohtake, T.1
  • 35
    • 85046649083 scopus 로고    scopus 로고
    • ‘Escherichia coli as a host for metabolic engineering’
    • Pontrelli, S., et al. ‘Escherichia coli as a host for metabolic engineering’. Metab. Eng., 2018.
    • (2018) Metab. Eng.
    • Pontrelli, S.1
  • 36
    • 84888771270 scopus 로고    scopus 로고
    • ‘Improving carotenoids production in yeast via adaptive laboratory evolution’
    • Reyes, L.H., Gomez, J.M., Kao, K.C., ‘Improving carotenoids production in yeast via adaptive laboratory evolution’. Metab. Eng. 21 (2014), 26–33, 10.1016/j.ymben.2013.11.002.
    • (2014) Metab. Eng. , vol.21 , pp. 26-33
    • Reyes, L.H.1    Gomez, J.M.2    Kao, K.C.3
  • 37
    • 10844293485 scopus 로고    scopus 로고
    • Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence
    • Rozkov, A., et al. Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88:7 (2004), 909–915, 10.1002/bit.20327.
    • (2004) Biotechnol. Bioeng. , vol.88 , Issue.7 , pp. 909-915
    • Rozkov, A.1
  • 38
    • 17644381300 scopus 로고    scopus 로고
    • Global gene expression profiling in Escherichia coli K12
    • Salmon, K.A., et al. Global gene expression profiling in Escherichia coli K12. J. Biol. Chem. 280:15 (2005), 15084–15096, 10.1074/jbc.M414030200.
    • (2005) J. Biol. Chem. , vol.280 , Issue.15 , pp. 15084-15096
    • Salmon, K.A.1
  • 39
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • Shen, C.R., et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:9 (2011), 2905–2915, 10.1128/AEM.03034-10.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.9 , pp. 2905-2915
    • Shen, C.R.1
  • 40
    • 0027293927 scopus 로고
    • Integration host factor is required for Anaerobic Pyruvate Induction of pfl operon expression in Escherichia coli
    • Sirko, A., et al. Integration host factor is required for Anaerobic Pyruvate Induction of pfl operon expression in Escherichia coli. J. Bacteriol. 175:18 (1993), 5769–5777.
    • (1993) J. Bacteriol. , vol.175 , Issue.18 , pp. 5769-5777
    • Sirko, A.1
  • 41
    • 85027141669 scopus 로고    scopus 로고
    • Integrative FourD omics approach profiles the target network of the carbon storage regulatory system
    • Sowa, S.W., et al. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res. 45:4 (2017), 1673–1686, 10.1093/nar/gkx048.
    • (2017) Nucleic Acids Res. , vol.45 , Issue.4 , pp. 1673-1686
    • Sowa, S.W.1
  • 42
    • 0016824876 scopus 로고
    • Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli
    • (Available at: 〈〉)
    • Swedes, J.S., Sedo, R.J., Atkinson, D.E., Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. J. Biol. Chem. 250:17 (1975), 6930–6938 (Available at: 〈 http://www.jbc.org/content/250/17/6930.short〉).
    • (1975) J. Biol. Chem. , vol.250 , Issue.17 , pp. 6930-6938
    • Swedes, J.S.1    Sedo, R.J.2    Atkinson, D.E.3
  • 43
    • 85051667516 scopus 로고    scopus 로고
    • MRMPROBS: A Data Assessment and Metabolite Identi fi cation Tool for Large-Scale Multiple Reaction Monitoring Based Widely Targeted Metabolomics.
    • Tsugawa, H., et al., 2013. MRMPROBS: A Data Assessment and Metabolite Identi fi cation Tool for Large-Scale Multiple Reaction Monitoring Based Widely Targeted Metabolomics.
    • (2013)
    • Tsugawa, H.1
  • 44
    • 78751578977 scopus 로고    scopus 로고
    • Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways
    • Veeravalli, K., et al. Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat. Chem. Biol. 7 (2011), 101–105, 10.1038/nchembio.499.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 101-105
    • Veeravalli, K.1
  • 45
    • 84956672842 scopus 로고    scopus 로고
    • Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis
    • Wernick, D.G., et al. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci. Rep., 6, 2016, 20224, 10.1038/srep20224.
    • (2016) Sci. Rep. , vol.6 , pp. 20224
    • Wernick, D.G.1
  • 46
    • 85051622666 scopus 로고
    • Dominant negative mutator Mutations in the Dominant Negative Mutator Mutations in the mutS Gene of Escherichia coli
    • Wu, T.H., Marinus, M.G., 1994. Dominant negative mutator Mutations in the Dominant Negative Mutator Mutations in the mutS Gene of Escherichia coli, vol. 176(17), pp. 2498–2504.
    • (1994) , vol.176 , Issue.17 , pp. 2498-2504
    • Wu, T.H.1    Marinus, M.G.2
  • 47
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7:7 (2011), 445–452, 10.1038/nchembio.580.
    • (2011) Nat. Chem. Biol. , vol.7 , Issue.7 , pp. 445-452
    • Yim, H.1
  • 48
    • 85047392973 scopus 로고    scopus 로고
    • In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli
    • Yishai, O., et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth. Biol., 2018, 10.1021/acssynbio.8b00131.
    • (2018) ACS Synth. Biol.
    • Yishai, O.1
  • 49
    • 0032920154 scopus 로고    scopus 로고
    • Chemically defined media for commercial fermentations
    • Zhang, J., Greasham, R., Chemically defined media for commercial fermentations. Appl. Microbiol. Biotechnol. 51:4 (1999), 407–421, 10.1007/s002530051411.
    • (1999) Appl. Microbiol. Biotechnol. , vol.51 , Issue.4 , pp. 407-421
    • Zhang, J.1    Greasham, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.