메뉴 건너뛰기




Volumn 224, Issue , 2018, Pages 155-168

D2TFRS: An object recognition method for autonomous vehicles based on RGB and spatial values of pixels

Author keywords

Autonomous driving; Autonomous vehicles; C5.0; Decision fusion; Decision tree; Deep learning; Majority voting; Object recognition; SVM

Indexed keywords

ADAPTIVE BOOSTING; AUTOMOBILE DRIVERS; DECISION TREES; DEEP LEARNING; PIXELS;

EID: 85051136430     PISSN: 18678211     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-94180-6_16     Document Type: Conference Paper
Times cited : (32)

References (49)
  • 1
    • 84946881371 scopus 로고    scopus 로고
    • Autonomous vehicle implementation predictions implications for transport planning
    • Litman, T.: Autonomous vehicle implementation predictions implications for transport planning. Transp. Res. Board Ann. Meet. 42, 36–42 (2015)
    • (2015) Transp. Res. Board Ann. Meet. , vol.42 , pp. 36-42
    • Litman, T.1
  • 6
    • 84916927549 scopus 로고    scopus 로고
    • Vision meets robotics: The KITTI dataset
    • Geiger, A., Lenz, P.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 14(3), 195– 210 (2013)
    • (2013) Int. J. Rob. Res. , vol.14 , Issue.3 , pp. 195-210
    • Geiger, A.1    Lenz, P.2
  • 7
    • 85051133699 scopus 로고    scopus 로고
    • UTiLearn: A personalised ubiquitous teaching and learning system for smart societies
    • Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 3536, 1–22 (2017)
    • (2017) IEEE Access , vol.3536 , pp. 1-22
    • Mehmood, R.1    Alam, F.2    Albogami, N.N.3    Katib, I.4    Albeshri, A.5    Altowaijri, S.6
  • 8
    • 85051103694 scopus 로고    scopus 로고
    • Analysis of eight data mining algorithms for smarter Internet of Things (IoT)
    • Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Int. Work. Data Min. IoT Syst. (DaMIS 2016) 98, 437–442 (2016)
    • (2016) Int. Work. Data Min. Iot Syst. (Damis , vol.2016 , Issue.98 , pp. 437-442
    • Alam, F.1    Mehmood, R.2    Katib, I.3    Albeshri, A.4
  • 11
    • 67349251034 scopus 로고    scopus 로고
    • Model based vehicle detection and tracking for autonomous urban driving
    • Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. Auton. Rob. 26, 123–139 (2009)
    • (2009) Auton. Rob. , vol.26 , pp. 123-139
    • Petrovskaya, A.1    Thrun, S.2
  • 12
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
    • Wu, B.O., Nevatia, R.A.M.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75, 247–266 (2007)
    • (2007) Int. J. Comput. Vis. , vol.75 , pp. 247-266
    • Wu, B.O.1    Nevatia, R.A.M.2
  • 14
    • 85048216257 scopus 로고    scopus 로고
    • Pushing the limits of deep CNNs for pedestrian detection
    • Hu, Q., Wang, P., Shen, C., Porikli, F.: Pushing the limits of deep CNNs for pedestrian detection. Comput. Vis. Pattern Recognit. 28(6), 1358–1368 (2018)
    • (2018) Comput. Vis. Pattern Recognit. , vol.28 , Issue.6 , pp. 1358-1368
    • Hu, Q.1    Wang, P.2    Shen, C.3    Porikli, F.4
  • 15
    • 85007344299 scopus 로고    scopus 로고
    • A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data
    • Navarro, P.J., Fernández, C., Borraz, R., Alonso, D.: A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17(1), 18 (2017)
    • (2017) Sensors , vol.17 , Issue.1 , pp. 18
    • Navarro, P.J.1    Fernández, C.2    Borraz, R.3    Alonso, D.4
  • 17
    • 85051116654 scopus 로고    scopus 로고
    • Deep learning makes driverless cars better at spotting pedestrians
    • Jul
    • Hsu, J.: Deep learning makes driverless cars better at spotting pedestrians. IEEE Spectrum: Technology, Engineering, and Science News. https://spectrum.ieee.org/cars-that-think/trans portation/advanced-cars/deep-learning-makes-driverless-cars-better-at-spotting-pedestrians. Accessed 3Jul 2018
    • (2018) IEEE Spectrum: Technology, Engineering, and Science News
    • Hsu, J.1
  • 18
    • 84861183293 scopus 로고    scopus 로고
    • Detection of sudden pedestrian crossings for driving assistance systems
    • Xu, Y., Xu, D., Lin, S., Han, T.X.: Detection of sudden pedestrian crossings for driving assistance systems. IEEE Trans. Syst. Man Cybern. Syst. 42, 729–739 (2012)
    • (2012) IEEE Trans. Syst. Man Cybern. Syst. , vol.42 , pp. 729-739
    • Xu, Y.1    Xu, D.2    Lin, S.3    Han, T.X.4
  • 23
    • 85051133120 scopus 로고    scopus 로고
    • Supervised learning methods for vision based road detection
    • Nair, V., Parthasarathy, N.: Supervised learning methods for vision based road detection. Stanford Univ. (2012)
    • (2012) Stanford Univ
    • Nair, V.1    Parthasarathy, N.2
  • 24
    • 85051114871 scopus 로고    scopus 로고
    • Data fusion and IoT for smart ubiquitous environments: A Survey
    • Alam, F., Mehmood, R., Member, S., Katib, I., Nasser, N.: Data fusion and IoT for smart ubiquitous environments: A Survey. IEEE Access 3536, 1–24 (2017)
    • (2017) IEEE Access , vol.3536 , pp. 1-24
    • Alam, F.1    Mehmood, R.2    Member, S.3    Katib, I.4    Nasser, N.5
  • 25
    • 84918503235 scopus 로고    scopus 로고
    • Multimodal information fusion for urban scene understanding
    • Xu, P., Davoine, F., Zhao, H., Denoeux, T.: Multimodal information fusion for urban scene understanding. Mach. Vis. Appl. 27(3), 331–349 (2014)
    • (2014) Mach. Vis. Appl. , vol.27 , Issue.3 , pp. 331-349
    • Xu, P.1    Davoine, F.2    Zhao, H.3    Denoeux, T.4
  • 29
    • 67651103189 scopus 로고    scopus 로고
    • Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Signal Processing Techniques for Knowledge Extraction and Information Fusion, Springer, Boston
    • Chumerin, N., Van Hulle, M.M.: Cue and sensor fusion for independent moving objects detection and description in driving scenes. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 161–180. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-74367-7_9
    • (2008) Cue and Sensor Fusion for Independent Moving Objects Detection and Description in Driving Scenes , pp. 161-180
    • Chumerin, N.1    van Hulle, M.M.2
  • 31
    • 84889077511 scopus 로고    scopus 로고
    • Environmental perception and sensor data fusion for unmanned ground vehicle
    • Zhao, Y., Li, J., Li, L., Zhang, M., Guo, L.: Environmental perception and sensor data fusion for unmanned ground vehicle. Math. Probl. Eng. 2013, 1–12 (2013)
    • (2013) Math. Probl. Eng. , vol.2013 , pp. 1-12
    • Zhao, Y.1    Li, J.2    Li, L.3    Zhang, M.4    Guo, L.5
  • 38
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)
    • (2008) Knowl. Inf. Syst. , vol.14 , pp. 1-37
    • Wu, X.1
  • 41
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 3, e2 (2014)
    • (2014) APSIPA Trans. Signal Inf. Process. , vol.3 , pp. e2
    • Deng, L.1
  • 42
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI. Found
    • Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2, 1–127 (2009)
    • (2009) Trends® Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 45
    • 85051122804 scopus 로고    scopus 로고
    • C5.0 decision trees and rule-based models
    • Kuhn, M., Weston, S., Coulter, N., Culp, M.: C5.0 decision trees and rule-based models. In: CRAN (2015)
    • (2015) CRAN
    • Kuhn, M.1    Weston, S.2    Coulter, N.3    Culp, M.4
  • 48
    • 0342411612 scopus 로고
    • Early history of the kappa statistic
    • Smeeton, N.C.: Early history of the kappa statistic. Biometrics. 41, 795 (1985)
    • (1985) Biometrics , vol.41 , pp. 795
    • Smeeton, N.C.1
  • 49
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
    • (1977) Biometrics , vol.33 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.