-
1
-
-
84946881371
-
Autonomous vehicle implementation predictions implications for transport planning
-
Litman, T.: Autonomous vehicle implementation predictions implications for transport planning. Transp. Res. Board Ann. Meet. 42, 36–42 (2015)
-
(2015)
Transp. Res. Board Ann. Meet.
, vol.42
, pp. 36-42
-
-
Litman, T.1
-
6
-
-
84916927549
-
Vision meets robotics: The KITTI dataset
-
Geiger, A., Lenz, P.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 14(3), 195– 210 (2013)
-
(2013)
Int. J. Rob. Res.
, vol.14
, Issue.3
, pp. 195-210
-
-
Geiger, A.1
Lenz, P.2
-
7
-
-
85051133699
-
UTiLearn: A personalised ubiquitous teaching and learning system for smart societies
-
Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 3536, 1–22 (2017)
-
(2017)
IEEE Access
, vol.3536
, pp. 1-22
-
-
Mehmood, R.1
Alam, F.2
Albogami, N.N.3
Katib, I.4
Albeshri, A.5
Altowaijri, S.6
-
8
-
-
85051103694
-
Analysis of eight data mining algorithms for smarter Internet of Things (IoT)
-
Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Int. Work. Data Min. IoT Syst. (DaMIS 2016) 98, 437–442 (2016)
-
(2016)
Int. Work. Data Min. Iot Syst. (Damis
, vol.2016
, Issue.98
, pp. 437-442
-
-
Alam, F.1
Mehmood, R.2
Katib, I.3
Albeshri, A.4
-
11
-
-
67349251034
-
Model based vehicle detection and tracking for autonomous urban driving
-
Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. Auton. Rob. 26, 123–139 (2009)
-
(2009)
Auton. Rob.
, vol.26
, pp. 123-139
-
-
Petrovskaya, A.1
Thrun, S.2
-
12
-
-
34548102203
-
Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
-
Wu, B.O., Nevatia, R.A.M.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75, 247–266 (2007)
-
(2007)
Int. J. Comput. Vis.
, vol.75
, pp. 247-266
-
-
Wu, B.O.1
Nevatia, R.A.M.2
-
14
-
-
85048216257
-
Pushing the limits of deep CNNs for pedestrian detection
-
Hu, Q., Wang, P., Shen, C., Porikli, F.: Pushing the limits of deep CNNs for pedestrian detection. Comput. Vis. Pattern Recognit. 28(6), 1358–1368 (2018)
-
(2018)
Comput. Vis. Pattern Recognit.
, vol.28
, Issue.6
, pp. 1358-1368
-
-
Hu, Q.1
Wang, P.2
Shen, C.3
Porikli, F.4
-
15
-
-
85007344299
-
A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data
-
Navarro, P.J., Fernández, C., Borraz, R., Alonso, D.: A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17(1), 18 (2017)
-
(2017)
Sensors
, vol.17
, Issue.1
, pp. 18
-
-
Navarro, P.J.1
Fernández, C.2
Borraz, R.3
Alonso, D.4
-
17
-
-
85051116654
-
Deep learning makes driverless cars better at spotting pedestrians
-
Jul
-
Hsu, J.: Deep learning makes driverless cars better at spotting pedestrians. IEEE Spectrum: Technology, Engineering, and Science News. https://spectrum.ieee.org/cars-that-think/trans portation/advanced-cars/deep-learning-makes-driverless-cars-better-at-spotting-pedestrians. Accessed 3Jul 2018
-
(2018)
IEEE Spectrum: Technology, Engineering, and Science News
-
-
Hsu, J.1
-
18
-
-
84861183293
-
Detection of sudden pedestrian crossings for driving assistance systems
-
Xu, Y., Xu, D., Lin, S., Han, T.X.: Detection of sudden pedestrian crossings for driving assistance systems. IEEE Trans. Syst. Man Cybern. Syst. 42, 729–739 (2012)
-
(2012)
IEEE Trans. Syst. Man Cybern. Syst.
, vol.42
, pp. 729-739
-
-
Xu, Y.1
Xu, D.2
Lin, S.3
Han, T.X.4
-
19
-
-
69549097735
-
Fast feature detection and stochastic parameter estimation of road shape using multiple LIDAR
-
Peterson, K., Ziglar, J., Rybski, P.E.: Fast feature detection and stochastic parameter estimation of road shape using multiple LIDAR. In: IEEE/RSJ International Conference on Intelligence Robotics System, pp. 22–26 (2008)
-
(2008)
IEEE/RSJ International Conference on Intelligence Robotics System
, pp. 22-26
-
-
Peterson, K.1
Ziglar, J.2
Rybski, P.E.3
-
20
-
-
84929192893
-
Vision-based robust road lane detection in urban environments
-
Beyeler, M., Mirus, F., Verl, A.: Vision-based robust road lane detection in urban environments. In: Proceedings of 2014 IEEE International Conference on Robotics Automation, pp. 4920–4925 (2014)
-
(2014)
Proceedings of 2014 IEEE International Conference on Robotics Automation
, pp. 4920-4925
-
-
Beyeler, M.1
Mirus, F.2
Verl, A.3
-
21
-
-
77956526911
-
Robust monocular lane detection in urban environments
-
Felisa, M., Zani, P., Dipartimento, V.: Robust monocular lane detection in urban environments. In: Proceedings of 2010 IEEE Intelligent Vehicles Symposium, pp. 591– 596 (2010)
-
(2010)
Proceedings of 2010 IEEE Intelligent Vehicles Symposium
, pp. 591-596
-
-
Felisa, M.1
Zani, P.2
Dipartimento, V.3
-
22
-
-
77956543066
-
Road detection using support vector machine based on online learning and evaluation
-
Zhou, S., Gong, J., Xiong, G., Chen, H., Iagnemma, K.: Road detection using support vector machine based on online learning and evaluation. In: Proceedings of 2010 IEEE Intelligent Vehicles Symposium, pp. 256–261 (2010)
-
(2010)
Proceedings of 2010 IEEE Intelligent Vehicles Symposium
, pp. 256-261
-
-
Zhou, S.1
Gong, J.2
Xiong, G.3
Chen, H.4
Iagnemma, K.5
-
23
-
-
85051133120
-
Supervised learning methods for vision based road detection
-
Nair, V., Parthasarathy, N.: Supervised learning methods for vision based road detection. Stanford Univ. (2012)
-
(2012)
Stanford Univ
-
-
Nair, V.1
Parthasarathy, N.2
-
24
-
-
85051114871
-
Data fusion and IoT for smart ubiquitous environments: A Survey
-
Alam, F., Mehmood, R., Member, S., Katib, I., Nasser, N.: Data fusion and IoT for smart ubiquitous environments: A Survey. IEEE Access 3536, 1–24 (2017)
-
(2017)
IEEE Access
, vol.3536
, pp. 1-24
-
-
Alam, F.1
Mehmood, R.2
Member, S.3
Katib, I.4
Nasser, N.5
-
25
-
-
84918503235
-
Multimodal information fusion for urban scene understanding
-
Xu, P., Davoine, F., Zhao, H., Denoeux, T.: Multimodal information fusion for urban scene understanding. Mach. Vis. Appl. 27(3), 331–349 (2014)
-
(2014)
Mach. Vis. Appl.
, vol.27
, Issue.3
, pp. 331-349
-
-
Xu, P.1
Davoine, F.2
Zhao, H.3
Denoeux, T.4
-
26
-
-
84910681761
-
Fusion of laser and monocular camera data in object grid maps for vehicle environment perception
-
Nuss, D., Thom, M., Danzer, A., Dietmayer, K.: Fusion of laser and monocular camera data in object grid maps for vehicle environment perception. In: Proceedings of 2014 17th International Conference on Intelligent Fusion (2014)
-
(2014)
Proceedings of 2014 17Th International Conference on Intelligent Fusion
-
-
Nuss, D.1
Thom, M.2
Danzer, A.3
Dietmayer, K.4
-
28
-
-
84929193302
-
A multi-sensor fusion system for moving object detection and tracking in urban driving environments
-
Cho, H., Seo, Y., Kumar, B.V.K.V., Rajkumar, R.R.: A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: Proceedings of 2014 IEEE International Conference on Robotics Automation, pp. 1836–1843 (2014)
-
(2014)
Proceedings of 2014 IEEE International Conference on Robotics Automation
, pp. 1836-1843
-
-
Cho, H.1
Seo, Y.2
Kumar, B.V.K.V.3
Rajkumar, R.R.4
-
29
-
-
67651103189
-
-
Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Signal Processing Techniques for Knowledge Extraction and Information Fusion, Springer, Boston
-
Chumerin, N., Van Hulle, M.M.: Cue and sensor fusion for independent moving objects detection and description in driving scenes. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 161–180. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-74367-7_9
-
(2008)
Cue and Sensor Fusion for Independent Moving Objects Detection and Description in Driving Scenes
, pp. 161-180
-
-
Chumerin, N.1
van Hulle, M.M.2
-
31
-
-
84889077511
-
Environmental perception and sensor data fusion for unmanned ground vehicle
-
Zhao, Y., Li, J., Li, L., Zhang, M., Guo, L.: Environmental perception and sensor data fusion for unmanned ground vehicle. Math. Probl. Eng. 2013, 1–12 (2013)
-
(2013)
Math. Probl. Eng.
, vol.2013
, pp. 1-12
-
-
Zhao, Y.1
Li, J.2
Li, L.3
Zhang, M.4
Guo, L.5
-
33
-
-
34249822423
-
Decision fusion for the classification of urban remote sensing images
-
Fauvel, M., Member, S., Chanussot, J., Member, S.: Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44, 2828–2838 (2006)
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, pp. 2828-2838
-
-
Fauvel, M.1
Member, S.2
Chanussot, J.3
Member, S.4
-
35
-
-
85029395496
-
Hyperspectral image classification based on gabor features and decision fusion
-
Ye, Z., Bai, L., Tan, L.: Hyperspectral image classification based on gabor features and decision fusion. In: Proceedings of 2017 2nd International Conference on Image Vision Computing, pp. 478–482 (2017)
-
(2017)
Proceedings of 2017 2Nd International Conference on Image Vision Computing
, pp. 478-482
-
-
Ye, Z.1
Bai, L.2
Tan, L.3
-
38
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)
-
(2008)
Knowl. Inf. Syst.
, vol.14
, pp. 1-37
-
-
Wu, X.1
-
40
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
41
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 3, e2 (2014)
-
(2014)
APSIPA Trans. Signal Inf. Process.
, vol.3
, pp. e2
-
-
Deng, L.1
-
42
-
-
69349090197
-
Learning deep architectures for AI. Found
-
Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2, 1–127 (2009)
-
(2009)
Trends® Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
43
-
-
84958022203
-
-
Candel, A., Lanford, J., LeDell, E., Parmar, V., Arora, A.: Deep Learning with H2O Deep Learning with H2O (2015)
-
(2015)
Deep Learning with H2O Deep Learning with H2O
-
-
Candel, A.1
Lanford, J.2
Ledell, E.3
Parmar, V.4
Arora, A.5
-
45
-
-
85051122804
-
C5.0 decision trees and rule-based models
-
Kuhn, M., Weston, S., Coulter, N., Culp, M.: C5.0 decision trees and rule-based models. In: CRAN (2015)
-
(2015)
CRAN
-
-
Kuhn, M.1
Weston, S.2
Coulter, N.3
Culp, M.4
-
47
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
48
-
-
0342411612
-
Early history of the kappa statistic
-
Smeeton, N.C.: Early history of the kappa statistic. Biometrics. 41, 795 (1985)
-
(1985)
Biometrics
, vol.41
, pp. 795
-
-
Smeeton, N.C.1
-
49
-
-
0017360990
-
The measurement of observer agreement for categorical data
-
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
-
(1977)
Biometrics
, vol.33
, pp. 159-174
-
-
Landis, J.R.1
Koch, G.G.2
|