-
1
-
-
84867725432
-
Best Care at Lower Cost: The Path to Continuously Learning Health Care in America
-
National Academies Press Washington, DC
-
Smith, M., Saunders, R., Stuckhardt, L., McGinnis, J.M., Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. 2013, National Academies Press, Washington, DC.
-
(2013)
-
-
Smith, M.1
Saunders, R.2
Stuckhardt, L.3
McGinnis, J.M.4
-
2
-
-
84905990877
-
Big data in health care: using analytics to identify and manage high-risk and high-cost patients
-
Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G., Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood) 33:7 (2014), 1123–1131.
-
(2014)
Health Aff (Millwood)
, vol.33
, Issue.7
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
Shah, A.4
Escobar, G.5
-
3
-
-
85099688310
-
Making big data useful for health care: a summary of the inaugural mit critical data conference
-
Badawi, O., Brennan, T., Celi, L.A., et al. Making big data useful for health care: a summary of the inaugural mit critical data conference. JMIR Med Inform, 2(2), 2014, e22.
-
(2014)
JMIR Med Inform
, vol.2
, Issue.2
, pp. e22
-
-
Badawi, O.1
Brennan, T.2
Celi, L.A.3
-
4
-
-
84911925260
-
What's so different about big data?. A primer for clinicians trained to think epidemiologically
-
Iwashyna, T.J., Liu, V., What's so different about big data?. A primer for clinicians trained to think epidemiologically. Ann Am Thorac Soc 11:7 (2014), 1130–1135.
-
(2014)
Ann Am Thorac Soc
, vol.11
, Issue.7
, pp. 1130-1135
-
-
Iwashyna, T.J.1
Liu, V.2
-
5
-
-
84878993675
-
“Big data” in the intensive care unit. Closing the data loop
-
Anthony Celi, L., Mark, R.G., Stone, D.J., Montgomery, R.A., “Big data” in the intensive care unit. Closing the data loop. Am J Respir Critic Care Med 187:11 (2013), 1157–1160.
-
(2013)
Am J Respir Critic Care Med
, vol.187
, Issue.11
, pp. 1157-1160
-
-
Anthony Celi, L.1
Mark, R.G.2
Stone, D.J.3
Montgomery, R.A.4
-
6
-
-
84928728572
-
State of the art review: the data revolution in critical care
-
Ghassemi, M., Celi, L.A., Stone, D.J., State of the art review: the data revolution in critical care. Crit Care, 19, 2015, 118.
-
(2015)
Crit Care
, vol.19
, pp. 118
-
-
Ghassemi, M.1
Celi, L.A.2
Stone, D.J.3
-
7
-
-
84982121501
-
Precision medicine for critical illness and injury
-
Buchman, T.G., Billiar, T.R., Elster, E., et al. Precision medicine for critical illness and injury. Crit Care Med 44:9 (2016), 1635–1638.
-
(2016)
Crit Care Med
, vol.44
, Issue.9
, pp. 1635-1638
-
-
Buchman, T.G.1
Billiar, T.R.2
Elster, E.3
-
8
-
-
84962092181
-
Machine learning and decision support in critical care
-
Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D., Machine learning and decision support in critical care. Proceedings IEEE 104:2 (2016), 444–466.
-
(2016)
Proceedings IEEE
, vol.104
, Issue.2
, pp. 444-466
-
-
Johnson, A.E.1
Ghassemi, M.M.2
Nemati, S.3
Niehaus, K.E.4
Clifton, D.A.5
Clifford, G.D.6
-
9
-
-
84991818987
-
Data science and its relationship to big data and data-driven decision making
-
Provost, F., Fawcett, T., Data science and its relationship to big data and data-driven decision making. Big Data 1:1 (2013), 51–59.
-
(2013)
Big Data
, vol.1
, Issue.1
, pp. 51-59
-
-
Provost, F.1
Fawcett, T.2
-
10
-
-
85030466573
-
Lost in thought—the limits of the human mind and the future of medicine
-
Obermeyer, Z., Lee, T., Lost in thought—the limits of the human mind and the future of medicine. N Engl J Med, 377(13), 2017, 1209.
-
(2017)
N Engl J Med
, vol.377
, Issue.13
, pp. 1209
-
-
Obermeyer, Z.1
Lee, T.2
-
11
-
-
84947466043
-
Machine learning in medicine
-
Deo, R.C., Machine learning in medicine. Circulation 132:20 (2015), 1920–1930.
-
(2015)
Circulation
, vol.132
, Issue.20
, pp. 1920-1930
-
-
Deo, R.C.1
-
12
-
-
84875646817
-
The inevitable application of big data to health care
-
Murdoch, T.B., Detsky, A.S., The inevitable application of big data to health care. JAMA 309:13 (2013), 1351–1352.
-
(2013)
JAMA
, vol.309
, Issue.13
, pp. 1351-1352
-
-
Murdoch, T.B.1
Detsky, A.S.2
-
13
-
-
84952778786
-
Data science in statistics curricula: preparing students to “think with data.” Am Stat
-
Hardin, J., Hoerl, R., Horton, N.J., et al. Data science in statistics curricula: preparing students to “think with data.” Am Stat., 69(4), 2015, 343–353.
-
(2015)
, vol.69
, Issue.4
, pp. 343-353
-
-
Hardin, J.1
Hoerl, R.2
Horton, N.J.3
-
14
-
-
84893874008
-
-
Springer New York, NY
-
James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning, Vol. 112, 2013, Springer, New York, NY.
-
(2013)
An Introduction to Statistical Learning
, vol.112
-
-
James, G.1
Witten, D.2
Hastie, T.3
Tibshirani, R.4
-
15
-
-
84954349720
-
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
-
Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44:2 (2016), 368–374.
-
(2016)
Crit Care Med
, vol.44
, Issue.2
, pp. 368-374
-
-
Churpek, M.M.1
Yuen, T.C.2
Winslow, C.3
Meltzer, D.O.4
Kattan, M.W.5
Edelson, D.P.6
-
16
-
-
85032875359
-
Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness
-
Seymour, C.W., Gomez, H., Chang, C.H., et al. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit Care, 21(1), 2017, 257.
-
(2017)
Crit Care
, vol.21
, Issue.1
, pp. 257
-
-
Seymour, C.W.1
Gomez, H.2
Chang, C.H.3
-
17
-
-
85041409711
-
Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models
-
Mayhew, M.B., Petersen, B.K., Sales, A.P., Greene, J.D., Liu, V.X., Wasson, T.S., Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models. J Biomed Inform 78 (2018), 33–42.
-
(2018)
J Biomed Inform
, vol.78
, pp. 33-42
-
-
Mayhew, M.B.1
Petersen, B.K.2
Sales, A.P.3
Greene, J.D.4
Liu, V.X.5
Wasson, T.S.6
-
18
-
-
84973375389
-
Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids
-
Wong, H.R., Atkinson, S.J., Cvijanovich, N.Z., et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med 44:10 (2016), e1000–e1003.
-
(2016)
Crit Care Med
, vol.44
, Issue.10
, pp. e1000-e1003
-
-
Wong, H.R.1
Atkinson, S.J.2
Cvijanovich, N.Z.3
-
19
-
-
85010748886
-
Tensor factorization for precision medicine in heart failure with preserved ejection fraction
-
Luo, Y., Ahmad, F.S., Shah, S.J., Tensor factorization for precision medicine in heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10:3 (2017), 305–312.
-
(2017)
J Cardiovasc Transl Res
, vol.10
, Issue.3
, pp. 305-312
-
-
Luo, Y.1
Ahmad, F.S.2
Shah, S.J.3
-
20
-
-
85017627030
-
Deep learning
-
Goodfellow, I., Bengio, Y., Courville, A., Deep learning. Adapt Comput Mach Le, 2016, 1–775.
-
(2016)
Adapt Comput Mach Le
, pp. 1-775
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
21
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:22 (2016), 2402–2410.
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
22
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:7639 (2017), 115–118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
23
-
-
84968813824
-
Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
-
Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 6, 2016, 26094.
-
(2016)
Sci Rep
, vol.6
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
24
-
-
85055641136
-
-
Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks. arXiv preprint arXiv:170106675. 2017 Jan 23.
-
Aczon M, Ledbetter D, Ho L, et al. Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks. arXiv preprint arXiv:170106675. 2017 Jan 23.
-
-
-
Aczon, M.1
Ledbetter, D.2
Ho, L.3
-
25
-
-
85013852123
-
Intensive care medicine in 2050: precision medicine
-
Wong, H.R., Intensive care medicine in 2050: precision medicine. Intensive Care Med, 43(10), 2017, 1507.
-
(2017)
Intensive Care Med
, vol.43
, Issue.10
, pp. 1507
-
-
Wong, H.R.1
-
26
-
-
0019602768
-
APACHE-acute physiology and chronic health evaluation: a physiologically based classification system
-
Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A., Lawrence, D.E., APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 9:8 (1981), 591–597.
-
(1981)
Crit Care Med
, vol.9
, Issue.8
, pp. 591-597
-
-
Knaus, W.A.1
Zimmerman, J.E.2
Wagner, D.P.3
Draper, E.A.4
Lawrence, D.E.5
-
27
-
-
0022256529
-
APACHE II: a severity of disease classification system
-
Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E., APACHE II: a severity of disease classification system. Crit Care Med 13:10 (1985), 818–829.
-
(1985)
Crit Care Med
, vol.13
, Issue.10
, pp. 818-829
-
-
Knaus, W.A.1
Draper, E.A.2
Wagner, D.P.3
Zimmerman, J.E.4
-
28
-
-
84921697939
-
Multicenter development and validation of a risk stratification tool for ward patients
-
Churpek, M.M., Yuen, T.C., Winslow, C., et al. Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med 190:6 (2014), 649–655.
-
(2014)
Am J Respir Crit Care Med
, vol.190
, Issue.6
, pp. 649-655
-
-
Churpek, M.M.1
Yuen, T.C.2
Winslow, C.3
-
29
-
-
84880838139
-
-
Prognostic physiology: modeling patient severity in intensive care units using radial domain folding. Paper presented at: American Medical Informatics Association Annual Symposium Proceedings; November 3-7 Chicago, IL.
-
Joshi R, Szolovits P. Prognostic physiology: modeling patient severity in intensive care units using radial domain folding. Paper presented at: American Medical Informatics Association Annual Symposium Proceedings; November 3-7, 2012; Chicago, IL.
-
(2012)
-
-
Joshi, R.1
Szolovits, P.2
-
30
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
299ra122
-
Henry, K.E., Hager, D.N., Pronovost, P.J., Saria, S., A targeted real-time early warning score (TREWScore) for septic shock. Sci Translat Med, 7(299), 2015 299ra122.
-
(2015)
Sci Translat Med
, vol.7
, Issue.299
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
Saria, S.4
-
31
-
-
85063999048
-
An interpretable machine learning model for accurate prediction of sepsis in the ICU
-
Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D., Buchman, T.G., An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical Care Medicine 46:4 (2018), 547–553.
-
(2018)
Critical Care Medicine
, vol.46
, Issue.4
, pp. 547-553
-
-
Nemati, S.1
Holder, A.2
Razmi, F.3
Stanley, M.D.4
Clifford, G.D.5
Buchman, T.G.6
-
32
-
-
84905502770
-
Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials
-
Calfee, C.S., Delucchi, K., Parsons, P.E., et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:8 (2014), 611–620.
-
(2014)
Lancet Respir Med
, vol.2
, Issue.8
, pp. 611-620
-
-
Calfee, C.S.1
Delucchi, K.2
Parsons, P.E.3
-
33
-
-
84937763158
-
Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome
-
Knox, D.B., Lanspa, M.J., Kuttler, K.G., Brewer, S.C., Brown, S.M., Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med 41:5 (2015), 814–822.
-
(2015)
Intensive Care Med
, vol.41
, Issue.5
, pp. 814-822
-
-
Knox, D.B.1
Lanspa, M.J.2
Kuttler, K.G.3
Brewer, S.C.4
Brown, S.M.5
-
34
-
-
85007242848
-
-
U Mortality Risk by Grouping Temporal Trends from a Multivariate Panel of Physiologic Measurements. Paper presented at: Proceedings of the 30th AAAI Conference on Artificial Intelligence;
-
Luo Y, Xin Y, Joshi R, Celi L, Szolovits P. Predicting ICU Mortality Risk by Grouping Temporal Trends from a Multivariate Panel of Physiologic Measurements. Paper presented at: Proceedings of the 30th AAAI Conference on Artificial Intelligence; 2016.
-
(2016)
-
-
Luo, Y.1
Xin, Y.2
Joshi, R.3
Celi, L.4
Szolovits, P.5
Predicting, I.C.6
-
35
-
-
85021057838
-
Identifying distinct subgroups of ICU patients: a machine learning approach
-
Vranas, K.C., Jopling, J.K., Sweeney, T.E., et al. Identifying distinct subgroups of ICU patients: a machine learning approach. Crit Care Med 45:10 (2017), 1607–1615.
-
(2017)
Crit Care Med
, vol.45
, Issue.10
, pp. 1607-1615
-
-
Vranas, K.C.1
Jopling, J.K.2
Sweeney, T.E.3
-
36
-
-
84989356188
-
Can you read me now? Unlocking narrative data with natural language processing
-
Sjoding, M.W., Liu, V.X., Can you read me now? Unlocking narrative data with natural language processing. Ann Am Thorac Soc 13:9 (2016), 1443–1445.
-
(2016)
Ann Am Thorac Soc
, vol.13
, Issue.9
, pp. 1443-1445
-
-
Sjoding, M.W.1
Liu, V.X.2
-
37
-
-
84880830110
-
-
Risk stratification of ICU patients using topic models inferred from unstructured progress notes. Paper presented at: AMIA annual symposium proceedings;
-
Lehman LW, Saeed M, Long W, Lee J, Mark R. Risk stratification of ICU patients using topic models inferred from unstructured progress notes. Paper presented at: AMIA annual symposium proceedings; 2012.
-
(2012)
-
-
Lehman, L.W.1
Saeed, M.2
Long, W.3
Lee, J.4
Mark, R.5
-
38
-
-
84907029489
-
-
Unfolding physiological state: mortality modelling in intensive care units. Paper presented at: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining;
-
Ghassemi M, Naumann T, Doshi-Velez F, et al. Unfolding physiological state: mortality modelling in intensive care units. Paper presented at: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2014.
-
(2014)
-
-
Ghassemi, M.1
Naumann, T.2
Doshi-Velez, F.3
-
39
-
-
84989352335
-
Natural language processing to assess documentation of features of critical illness in discharge documents of acute respiratory distress syndrome survivors
-
Weissman, G.E., Harhay, M.O., Lugo, R.M., Fuchs, B.D., Halpern, S.D., Mikkelsen, M.E., Natural language processing to assess documentation of features of critical illness in discharge documents of acute respiratory distress syndrome survivors. Ann Am Thoracic Soc 13:9 (2016), 1538–1545.
-
(2016)
Ann Am Thoracic Soc
, vol.13
, Issue.9
, pp. 1538-1545
-
-
Weissman, G.E.1
Harhay, M.O.2
Lugo, R.M.3
Fuchs, B.D.4
Halpern, S.D.5
Mikkelsen, M.E.6
-
40
-
-
79955479858
-
Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database
-
Saeed, M., Villarroel, M., Reisner, A.T., et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med, 39(5), 2011, 952.
-
(2011)
Crit Care Med
, vol.39
, Issue.5
, pp. 952
-
-
Saeed, M.1
Villarroel, M.2
Reisner, A.T.3
-
41
-
-
59649101944
-
The cardiac output from blood pressure algorithms trial
-
Sun, J.X., Reisner, A.T., Saeed, M., Heldt, T., Mark, R.G., The cardiac output from blood pressure algorithms trial. Crit Care Med, 37(1), 2009, 72.
-
(2009)
Crit Care Med
, vol.37
, Issue.1
, pp. 72
-
-
Sun, J.X.1
Reisner, A.T.2
Saeed, M.3
Heldt, T.4
Mark, R.G.5
-
42
-
-
84953337634
-
-
Robust monitoring of hypovolemia in intensive care patients using photoplethysmogram signals. Paper presented at: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE;
-
Roederer A, Weimer J, DiMartino J, Gutsche J, Lee I. Robust monitoring of hypovolemia in intensive care patients using photoplethysmogram signals. Paper presented at: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE; 2015.
-
(2015)
-
-
Roederer, A.1
Weimer, J.2
DiMartino, J.3
Gutsche, J.4
Lee, I.5
-
43
-
-
84953322576
-
-
Predicting hyperlactatemia in the MIMIC II database. Paper presented at: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE;
-
Dunitz M, Verghese G, Heldt T. Predicting hyperlactatemia in the MIMIC II database. Paper presented at: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE; 2015.
-
(2015)
-
-
Dunitz, M.1
Verghese, G.2
Heldt, T.3
-
44
-
-
85026529300
-
A survey on deep learning in medical image analysis
-
Litjens, G., Kooi, T., Bejnordi, B.E., et al. A survey on deep learning in medical image analysis. Medical Image Analysis 42 (2017), 60–88.
-
(2017)
Medical Image Analysis
, vol.42
, pp. 60-88
-
-
Litjens, G.1
Kooi, T.2
Bejnordi, B.E.3
-
45
-
-
85045121335
-
Disease staging and prognosis in smokers using deep learning in chest computed tomography
-
Gonzalez, G., Ash, S.Y., Vegas-Sanchez-Ferrero, G., et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med 197:2 (2018), 193–203.
-
(2018)
Am J Respir Crit Care Med
, vol.197
, Issue.2
, pp. 193-203
-
-
Gonzalez, G.1
Ash, S.Y.2
Vegas-Sanchez-Ferrero, G.3
-
46
-
-
85055637554
-
-
Deep learning with non-medical training used for chest pathology identification. Paper presented at: Proc. SPIE2015.
-
Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. Paper presented at: Proc. SPIE2015.
-
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
47
-
-
84926420669
-
Toward a modern era in clinical prediction: the TRIPOD statement for reporting prediction models
-
Tangri, N., Kent, D.M., Toward a modern era in clinical prediction: the TRIPOD statement for reporting prediction models. Am J Kidney Dis 65:4 (2015), 530–533.
-
(2015)
Am J Kidney Dis
, vol.65
, Issue.4
, pp. 530-533
-
-
Tangri, N.1
Kent, D.M.2
-
48
-
-
85040255565
-
What this computer needs is a physician: humanism and artificial intelligence
-
Verghese, A., Shah, N.H., Harrington, R.A., What this computer needs is a physician: humanism and artificial intelligence. JAMA 319:1 (2018), 19–20.
-
(2018)
JAMA
, vol.319
, Issue.1
, pp. 19-20
-
-
Verghese, A.1
Shah, N.H.2
Harrington, R.A.3
-
49
-
-
84924445560
-
The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: a pilot step-wedge cluster randomized trial
-
Pickering, B.W., Dong, Y., Ahmed, A., et al. The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: a pilot step-wedge cluster randomized trial. Int J Med Inform 84:5 (2015), 299–307.
-
(2015)
Int J Med Inform
, vol.84
, Issue.5
, pp. 299-307
-
-
Pickering, B.W.1
Dong, Y.2
Ahmed, A.3
-
50
-
-
84978933913
-
The impact of real-time alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial
-
Awdishu, L., Coates, C.R., Lyddane, A., et al. The impact of real-time alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial. J Am Med Inform Assoc 23:3 (2016), 609–616.
-
(2016)
J Am Med Inform Assoc
, vol.23
, Issue.3
, pp. 609-616
-
-
Awdishu, L.1
Coates, C.R.2
Lyddane, A.3
-
51
-
-
84863332160
-
Effect of clinical decision-support systems: a systematic review
-
Bright, T.J., Wong, A., Dhurjati, R., et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med 157:1 (2012), 29–43.
-
(2012)
Ann Intern Med
, vol.157
, Issue.1
, pp. 29-43
-
-
Bright, T.J.1
Wong, A.2
Dhurjati, R.3
-
52
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors
-
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:12070580, 2012.
-
(2012)
arXiv preprint arXiv:12070580
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
53
-
-
85058076047
-
Pattern recognition and Machine Learning. New York, NY: Springer Science+Business Media
-
Bishop, C.M., Pattern recognition and Machine Learning. New York, NY: Springer Science+Business Media. LLC, 2006.
-
(2006)
LLC
-
-
Bishop, C.M.1
-
54
-
-
33644699125
-
Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system
-
Han, Y.Y., Carcillo, J.A., Venkataraman, S.T., et al. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 116:6 (2005), 1506–1512.
-
(2005)
Pediatrics
, vol.116
, Issue.6
, pp. 1506-1512
-
-
Han, Y.Y.1
Carcillo, J.A.2
Venkataraman, S.T.3
-
55
-
-
84975509985
-
-
Frequency of passive EHR alerts in the ICU: another form of alert fatigue [published online ahead of print June 22, 2016]? J Patient Saf.
-
Kizzier-Carnahan V, Artis KA, Mohan V, Gold JA. Frequency of passive EHR alerts in the ICU: another form of alert fatigue [published online ahead of print June 22, 2016]? J Patient Saf. https://doi.org/10.1097/PTS.0000000000000270.
-
-
-
Kizzier-Carnahan, V.1
Artis, K.A.2
Mohan, V.3
Gold, J.A.4
-
56
-
-
84855454549
-
Thinking, Fast and Slow
-
Farrar, Staus and Giroux New York, NY
-
Kahneman, D., Thinking, Fast and Slow. 2011, Farrar, Staus and Giroux, New York, NY.
-
(2011)
-
-
Kahneman, D.1
-
57
-
-
84942259914
-
Patient mortality is associated with staff resources and workload in the ICU: a multicenter observational study
-
Neuraz, A., Guerin, C., Payet, C., et al. Patient mortality is associated with staff resources and workload in the ICU: a multicenter observational study. Crit Care Med 43:8 (2015), 1587–1594.
-
(2015)
Crit Care Med
, vol.43
, Issue.8
, pp. 1587-1594
-
-
Neuraz, A.1
Guerin, C.2
Payet, C.3
-
58
-
-
85055647811
-
-
Reproducibility in critical care: a mortality prediction case study. Paper presented at: Machine Learning for Healthcare Conference;
-
Johnson AE, Pollard TJ, Mark RG. Reproducibility in critical care: a mortality prediction case study. Paper presented at: Machine Learning for Healthcare Conference; 2017.
-
(2017)
-
-
Johnson, A.E.1
Pollard, T.J.2
Mark, R.G.3
-
59
-
-
85104094046
-
Big data analytics in healthcare: promise and potential
-
Raghupathi, W., Raghupathi, V., Big data analytics in healthcare: promise and potential. Health Inf Sci Syst, 2, 2014, 3.
-
(2014)
Health Inf Sci Syst
, vol.2
, pp. 3
-
-
Raghupathi, W.1
Raghupathi, V.2
|