-
1
-
-
84959350250
-
A framework for the development and interpretation of different sepsis definitions and clinical criteria
-
Angus, D.C., Seymour, C.W., Coopersmith, C.M., Deutschman, C.S., Klompas, M., Levy, M.M., Martin, G.S., Osborn, T.M., Rhee, C., Watson, R.S., A framework for the development and interpretation of different sepsis definitions and clinical criteria. Crit. Care Med. 44:3 (2016), e113–e121.
-
(2016)
Crit. Care Med.
, vol.44
, Issue.3
, pp. e113-e121
-
-
Angus, D.C.1
Seymour, C.W.2
Coopersmith, C.M.3
Deutschman, C.S.4
Klompas, M.5
Levy, M.M.6
Martin, G.S.7
Osborn, T.M.8
Rhee, C.9
Watson, R.S.10
-
2
-
-
84992084119
-
Semi-supervised learning of the electronic health record for phenotype stratification
-
Beaulieu-Jones, B.K., Greene, C.S., Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inf. 64 (2016), 168–178.
-
(2016)
J. Biomed. Inf.
, vol.64
, pp. 168-178
-
-
Beaulieu-Jones, B.K.1
Greene, C.S.2
-
3
-
-
85021860204
-
The Pooled Resource Open-Access ALS Clinical Trials Consortium, Missing data imputation in the electronic health record using deeply learned autoencoders
-
Biocomputing
-
B.K. Beaulieu-Jones, J.H. Moore, The Pooled Resource Open-Access ALS Clinical Trials Consortium, Missing data imputation in the electronic health record using deeply learned autoencoders, in: Biocomputing, 2017, pp. 207–218.
-
(2017)
, pp. 207-218
-
-
Beaulieu-Jones, B.K.1
Moore, J.H.2
-
4
-
-
0141607824
-
Latent Dirichlet allocation
-
Blei, D.M., Ng, A.Y., Jordan, M.I., Latent Dirichlet allocation. J. Mach. Learn. Res. 3:March (2003), 993–1022.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, Issue.March
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
5
-
-
0035478854
-
Random forests
-
Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
79953732420
-
MICE: multivariate imputation by chained equations in R
-
Buuren, S., Groothuis-Oudshoorn, K., MICE: multivariate imputation by chained equations in R. J. Statist. Softw., 45(3), 2011.
-
(2011)
J. Statist. Softw.
, vol.45
, Issue.3
-
-
Buuren, S.1
Groothuis-Oudshoorn, K.2
-
7
-
-
84923326346
-
Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis
-
Carroll, R.J., Eyler, A.E., Denny, J.C., Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis. Exp. Rev. Clin. Immunol. 11:3 (2015), 329–337.
-
(2015)
Exp. Rev. Clin. Immunol.
, vol.11
, Issue.3
, pp. 329-337
-
-
Carroll, R.J.1
Eyler, A.E.2
Denny, J.C.3
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B (Methodol.) 39:1 (1977), 1–38.
-
(1977)
J. R. Statist. Soc. Ser. B (Methodol.)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
42449097690
-
Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
-
Escobar, G.J., Greene, J.D., Scheirer, P., Gardner, M.N., Draper, D., Kipnis, P., Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med. Care. 46:3 (2008), 232–239.
-
(2008)
Med. Care.
, vol.46
, Issue.3
, pp. 232-239
-
-
Escobar, G.J.1
Greene, J.D.2
Scheirer, P.3
Gardner, M.N.4
Draper, D.5
Kipnis, P.6
-
10
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection
-
Springer
-
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S., A geometric framework for unsupervised anomaly detection. Applications of Data Mining in Computer Security, 2002, Springer, 77–101.
-
(2002)
Applications of Data Mining in Computer Security
, pp. 77-101
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
11
-
-
38149091464
-
Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data
-
Cambridge University Press New York, NY, USA
-
Feldman, R., Sanger, J., Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. 2006, Cambridge University Press, New York, NY, USA.
-
(2006)
-
-
Feldman, R.1
Sanger, J.2
-
12
-
-
0001337675
-
A new similarity index based on probability
-
Goodall, D.W., A new similarity index based on probability. Biometrics, 1966, 882–907.
-
(1966)
Biometrics
, pp. 882-907
-
-
Goodall, D.W.1
-
13
-
-
84971320866
-
Sepsis: pathophysiology and clinical management
-
Gotts, J.E., Matthay, M.A., Sepsis: pathophysiology and clinical management. BMJ, 353, 2016.
-
(2016)
BMJ
, vol.353
-
-
Gotts, J.E.1
Matthay, M.A.2
-
14
-
-
84981275873
-
Electronic medical record phenotyping using the anchor and learn framework
-
Halpern, Y., Horng, S., Choi, Y., Sontag, D., Electronic medical record phenotyping using the anchor and learn framework. J. Am. Med. Inf. Assoc. 23:4 (2016), 731–740.
-
(2016)
J. Am. Med. Inf. Assoc.
, vol.23
, Issue.4
, pp. 731-740
-
-
Halpern, Y.1
Horng, S.2
Choi, Y.3
Sontag, D.4
-
15
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144:5 (2011), 646–674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
16
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
299ra122–299ra122
-
Henry, K.E., Hager, D.N., Pronovost, P.J., Saria, S., A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med., 7(299), 2015 299ra122–299ra122.
-
(2015)
Sci. Transl. Med.
, vol.7
, Issue.299
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
Saria, S.4
-
17
-
-
84899106645
-
Septic shock prediction for patients with missing data
-
Ho, J.C., Lee, C.H., Ghosh, J., Septic shock prediction for patients with missing data. ACM Trans. Manage. Inf. Syst. 5:1 (2014), 1:1–1:15.
-
(2014)
ACM Trans. Manage. Inf. Syst.
, vol.5
, Issue.1
, pp. 11-1:15
-
-
Ho, J.C.1
Lee, C.H.2
Ghosh, J.3
-
18
-
-
85041427282
-
Identifiable phenotyping using constrained non-negative matrix factorization
-
Machine Learning in Healthcare.
-
S. Joshi, S. Gunasekar, D. Sontag, J. Ghosh, Identifiable phenotyping using constrained non-negative matrix factorization, in: Machine Learning in Healthcare, 2016.
-
(2016)
-
-
Joshi, S.1
Gunasekar, S.2
Sontag, D.3
Ghosh, J.4
-
19
-
-
16244414973
-
Partitioning around medoids (program PAM)
-
John Wiley & Sons Inc.
-
Kaufman, L., Rousseeuw, P.J., Partitioning around medoids (program PAM). Finding Groups in Data, 2008, John Wiley & Sons Inc., 68–125.
-
(2008)
Finding Groups in Data
, pp. 68-125
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
20
-
-
84995523796
-
-
Applied Predictive Modeling, SpringerLink: Bücher, Springer New York.
-
M. Kuhn, K. Johnson, Applied Predictive Modeling, SpringerLink: Bücher, Springer New York, 2013.
-
(2013)
-
-
Kuhn, M.1
Johnson, K.2
-
21
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 8:6 (2013), 1–13.
-
(2013)
PLoS ONE
, vol.8
, Issue.6
, pp. 1-13
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
22
-
-
84903614329
-
Hospital deaths in patients with sepsis from 2 independent cohorts
-
Liu, V., Escobar, G.J., Greene, J.D., Soule, J., Whippy, A., Angus, D.C., Iwashyna, T.J., Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312:1 (2014), 90–92.
-
(2014)
JAMA
, vol.312
, Issue.1
, pp. 90-92
-
-
Liu, V.1
Escobar, G.J.2
Greene, J.D.3
Soule, J.4
Whippy, A.5
Angus, D.C.6
Iwashyna, T.J.7
-
23
-
-
85030683526
-
The timing of early antibiotics and hospital mortality in sepsis
-
Liu, V.X., Fielding-Singh, V., Greene, J.D., Baker, J.M., Iwashyna, T.J., Bhattacharya, J., Escobar, G.J., The timing of early antibiotics and hospital mortality in sepsis. Am. J. Resp. Crit. Care Med. 196:7 (2017), 856–863.
-
(2017)
Am. J. Resp. Crit. Care Med.
, vol.196
, Issue.7
, pp. 856-863
-
-
Liu, V.X.1
Fielding-Singh, V.2
Greene, J.D.3
Baker, J.M.4
Iwashyna, T.J.5
Bhattacharya, J.6
Escobar, G.J.7
-
24
-
-
31744431565
-
The staging of sepsis: understanding heterogeneity in treatment efficacy
-
Marshall, J.C., The staging of sepsis: understanding heterogeneity in treatment efficacy. Crit. Care, 9(6), 2005, 626.
-
(2005)
Crit. Care
, vol.9
, Issue.6
, pp. 626
-
-
Marshall, J.C.1
-
25
-
-
84968813824
-
Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
-
26094 EP – 05
-
Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scient. Rep., 6, 2016 26094 EP – 05.
-
(2016)
Scient. Rep.
, vol.6
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
26
-
-
80055046324
-
Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring
-
Moorman, J.R., Delos, J.B., Flower, A.A., Cao, H., Kovatchev, B.P., Richman, J.S., Lake, D.E., Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol. Measur. 32:11 (2011), 1821–1832.
-
(2011)
Physiol. Measur.
, vol.32
, Issue.11
, pp. 1821-1832
-
-
Moorman, J.R.1
Delos, J.B.2
Flower, A.A.3
Cao, H.4
Kovatchev, B.P.5
Richman, J.S.6
Lake, D.E.7
-
27
-
-
0042164384
-
Distributed EM algorithms for density estimation and clustering in sensor networks
-
Nowak, R.D., Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Sig. Process. 51:8 (2003), 2245–2253.
-
(2003)
IEEE Trans. Sig. Process.
, vol.51
, Issue.8
, pp. 2245-2253
-
-
Nowak, R.D.1
-
28
-
-
84901259802
-
Developing predictive models using electronic medical records: challenges and pitfalls
-
AMIA 2013, American Medical Informatics Association Annual Symposium.
-
C. Paxton, A. Niculescu-Mizil, S. Saria, Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA 2013, American Medical Informatics Association Annual Symposium, 2013.
-
(2013)
-
-
Paxton, C.1
Niculescu-Mizil, A.2
Saria, S.3
-
29
-
-
84947906337
-
Learning probabilistic phenotypes from heterogeneous EHR data
-
Pivovarov, R., Perotte, A.J., Grave, E., Angiolillo, J., Wiggins, C.H., Elhadad, N., Learning probabilistic phenotypes from heterogeneous EHR data. J. Biomed. Inf. 58:C (2015), 156–165.
-
(2015)
J. Biomed. Inf.
, vol.58
, Issue.100
, pp. 156-165
-
-
Pivovarov, R.1
Perotte, A.J.2
Grave, E.3
Angiolillo, J.4
Wiggins, C.H.5
Elhadad, N.6
-
30
-
-
25444448065
-
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
-
The MIT Press
-
Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). 2005, The MIT Press.
-
(2005)
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
31
-
-
85041412529
-
Semi-supervised classification of texts using particle learning for probabilistic automata
-
Oxford University Press
-
Sales, A.P., Challis, C., Prenger, R., Merl, D., Semi-supervised classification of texts using particle learning for probabilistic automata. Bayesian Theory and Applications, 2013, Oxford University Press.
-
(2013)
Bayesian Theory and Applications
-
-
Sales, A.P.1
Challis, C.2
Prenger, R.3
Merl, D.4
-
33
-
-
77951981110
-
Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy
-
Schnitt, S.J., Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod. Pathol. 23:S2 (2010), S60–S64.
-
(2010)
Mod. Pathol.
, vol.23
, Issue.S2
, pp. S60-S64
-
-
Schnitt, S.J.1
-
34
-
-
84959317195
-
Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3)
-
Seymour, C.W., Liu, V.X., Iwashyna, T.J., Brunkhorst, F.M., Rea, T.D., Scherag, A., Rubenfeld, G., Kahn, J.M., Shankar-Hari, M., Singer, M., Deutschman, C.S., Escobar, G.J., Angus, D.C., Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:8 (2016), 762–774.
-
(2016)
JAMA
, vol.315
, Issue.8
, pp. 762-774
-
-
Seymour, C.W.1
Liu, V.X.2
Iwashyna, T.J.3
Brunkhorst, F.M.4
Rea, T.D.5
Scherag, A.6
Rubenfeld, G.7
Kahn, J.M.8
Shankar-Hari, M.9
Singer, M.10
Deutschman, C.S.11
Escobar, G.J.12
Angus, D.C.13
-
35
-
-
84959273475
-
The third international consensus definitions for sepsis and septic shock (Sepsis-3)
-
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Rubenfeld, G.D., van der Poll, T., Vincent, J.L., Angus, D.C., The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:8 (2016), 801–810.
-
(2016)
JAMA
, vol.315
, Issue.8
, pp. 801-810
-
-
Singer, M.1
Deutschman, C.S.2
Seymour, C.W.3
Shankar-Hari, M.4
Annane, D.5
Bauer, M.6
Bellomo, R.7
Bernard, G.R.8
Chiche, J.D.9
Coopersmith, C.M.10
Hotchkiss, R.S.11
Levy, M.M.12
Marshall, J.C.13
Martin, G.S.14
Opal, S.M.15
Rubenfeld, G.D.16
van der Poll, T.17
Vincent, J.L.18
Angus, D.C.19
-
37
-
-
85041391274
-
Application-agnostic streaming bayesian inference via apache storm
-
International Conference on Big Data Analytics.
-
T. Wasson, A.P. Sales, Application-agnostic streaming bayesian inference via apache storm, in: International Conference on Big Data Analytics, 2014.
-
(2014)
-
-
Wasson, T.1
Sales, A.P.2
-
38
-
-
84958599888
-
Strategies for handling missing data in electronic health record derived data
-
Wells, B.J., Chagi, K.M., Nowacki, A.S., Kattan, M.W., Strategies for handling missing data in electronic health record derived data. eGEMs, 1(3), 2013.
-
(2013)
eGEMs
, vol.1
, Issue.3
-
-
Wells, B.J.1
Chagi, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
-
39
-
-
84952015331
-
Learning data-driven patient risk stratification models for Clostridium difficile
-
Wiens, J., Campbell, W.N., Franklin, E.S., Guttag, J.V., Horvitz, E., Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infect Dis., 1(2), 2014, ofu045.
-
(2014)
Open Forum Infect Dis.
, vol.1
, Issue.2
, pp. ofu045
-
-
Wiens, J.1
Campbell, W.N.2
Franklin, E.S.3
Guttag, J.V.4
Horvitz, E.5
-
40
-
-
84979871458
-
Patient risk stratification with time-varying parameters: a multitask learning approach
-
Wiens, J., Guttag, J., Horvitz, E., Patient risk stratification with time-varying parameters: a multitask learning approach. J. Mach. Learn. Res. 17:1 (2016), 2797–2819.
-
(2016)
J. Mach. Learn. Res.
, vol.17
, Issue.1
, pp. 2797-2819
-
-
Wiens, J.1
Guttag, J.2
Horvitz, E.3
-
41
-
-
84946650481
-
Probable inference, the law of succession, and statistical inference
-
Wilson, E.B., Probable inference, the law of succession, and statistical inference. J. Am. Statist. Assoc. 22 (1927), 209–212.
-
(1927)
J. Am. Statist. Assoc.
, vol.22
, pp. 209-212
-
-
Wilson, E.B.1
|