메뉴 건너뛰기




Volumn 78, Issue , 2018, Pages 33-42

Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models

Author keywords

Cluster analysis; Composite mixture model; Electronic health records; Mixture modeling; Risk stratification; Sepsis

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; DIAGNOSIS; HEALTH RISKS; HOSPITALS; LEARNING SYSTEMS; MEDICAL COMPUTING; MIXTURES; MULTIVARIANT ANALYSIS; PATIENT TREATMENT; RISK ASSESSMENT;

EID: 85041409711     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2017.11.015     Document Type: Article
Times cited : (26)

References (41)
  • 2
    • 84992084119 scopus 로고    scopus 로고
    • Semi-supervised learning of the electronic health record for phenotype stratification
    • Beaulieu-Jones, B.K., Greene, C.S., Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inf. 64 (2016), 168–178.
    • (2016) J. Biomed. Inf. , vol.64 , pp. 168-178
    • Beaulieu-Jones, B.K.1    Greene, C.S.2
  • 3
    • 85021860204 scopus 로고    scopus 로고
    • The Pooled Resource Open-Access ALS Clinical Trials Consortium, Missing data imputation in the electronic health record using deeply learned autoencoders
    • Biocomputing
    • B.K. Beaulieu-Jones, J.H. Moore, The Pooled Resource Open-Access ALS Clinical Trials Consortium, Missing data imputation in the electronic health record using deeply learned autoencoders, in: Biocomputing, 2017, pp. 207–218.
    • (2017) , pp. 207-218
    • Beaulieu-Jones, B.K.1    Moore, J.H.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 79953732420 scopus 로고    scopus 로고
    • MICE: multivariate imputation by chained equations in R
    • Buuren, S., Groothuis-Oudshoorn, K., MICE: multivariate imputation by chained equations in R. J. Statist. Softw., 45(3), 2011.
    • (2011) J. Statist. Softw. , vol.45 , Issue.3
    • Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 7
    • 84923326346 scopus 로고    scopus 로고
    • Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis
    • Carroll, R.J., Eyler, A.E., Denny, J.C., Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis. Exp. Rev. Clin. Immunol. 11:3 (2015), 329–337.
    • (2015) Exp. Rev. Clin. Immunol. , vol.11 , Issue.3 , pp. 329-337
    • Carroll, R.J.1    Eyler, A.E.2    Denny, J.C.3
  • 9
    • 42449097690 scopus 로고    scopus 로고
    • Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
    • Escobar, G.J., Greene, J.D., Scheirer, P., Gardner, M.N., Draper, D., Kipnis, P., Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med. Care. 46:3 (2008), 232–239.
    • (2008) Med. Care. , vol.46 , Issue.3 , pp. 232-239
    • Escobar, G.J.1    Greene, J.D.2    Scheirer, P.3    Gardner, M.N.4    Draper, D.5    Kipnis, P.6
  • 11
    • 38149091464 scopus 로고    scopus 로고
    • Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data
    • Cambridge University Press New York, NY, USA
    • Feldman, R., Sanger, J., Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. 2006, Cambridge University Press, New York, NY, USA.
    • (2006)
    • Feldman, R.1    Sanger, J.2
  • 12
    • 0001337675 scopus 로고
    • A new similarity index based on probability
    • Goodall, D.W., A new similarity index based on probability. Biometrics, 1966, 882–907.
    • (1966) Biometrics , pp. 882-907
    • Goodall, D.W.1
  • 13
    • 84971320866 scopus 로고    scopus 로고
    • Sepsis: pathophysiology and clinical management
    • Gotts, J.E., Matthay, M.A., Sepsis: pathophysiology and clinical management. BMJ, 353, 2016.
    • (2016) BMJ , vol.353
    • Gotts, J.E.1    Matthay, M.A.2
  • 14
    • 84981275873 scopus 로고    scopus 로고
    • Electronic medical record phenotyping using the anchor and learn framework
    • Halpern, Y., Horng, S., Choi, Y., Sontag, D., Electronic medical record phenotyping using the anchor and learn framework. J. Am. Med. Inf. Assoc. 23:4 (2016), 731–740.
    • (2016) J. Am. Med. Inf. Assoc. , vol.23 , Issue.4 , pp. 731-740
    • Halpern, Y.1    Horng, S.2    Choi, Y.3    Sontag, D.4
  • 15
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144:5 (2011), 646–674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 16
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • 299ra122–299ra122
    • Henry, K.E., Hager, D.N., Pronovost, P.J., Saria, S., A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med., 7(299), 2015 299ra122–299ra122.
    • (2015) Sci. Transl. Med. , vol.7 , Issue.299
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3    Saria, S.4
  • 17
    • 84899106645 scopus 로고    scopus 로고
    • Septic shock prediction for patients with missing data
    • Ho, J.C., Lee, C.H., Ghosh, J., Septic shock prediction for patients with missing data. ACM Trans. Manage. Inf. Syst. 5:1 (2014), 1:1–1:15.
    • (2014) ACM Trans. Manage. Inf. Syst. , vol.5 , Issue.1 , pp. 11-1:15
    • Ho, J.C.1    Lee, C.H.2    Ghosh, J.3
  • 18
    • 85041427282 scopus 로고    scopus 로고
    • Identifiable phenotyping using constrained non-negative matrix factorization
    • Machine Learning in Healthcare.
    • S. Joshi, S. Gunasekar, D. Sontag, J. Ghosh, Identifiable phenotyping using constrained non-negative matrix factorization, in: Machine Learning in Healthcare, 2016.
    • (2016)
    • Joshi, S.1    Gunasekar, S.2    Sontag, D.3    Ghosh, J.4
  • 19
    • 16244414973 scopus 로고    scopus 로고
    • Partitioning around medoids (program PAM)
    • John Wiley & Sons Inc.
    • Kaufman, L., Rousseeuw, P.J., Partitioning around medoids (program PAM). Finding Groups in Data, 2008, John Wiley & Sons Inc., 68–125.
    • (2008) Finding Groups in Data , pp. 68-125
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 20
    • 84995523796 scopus 로고    scopus 로고
    • Applied Predictive Modeling, SpringerLink: Bücher, Springer New York.
    • M. Kuhn, K. Johnson, Applied Predictive Modeling, SpringerLink: Bücher, Springer New York, 2013.
    • (2013)
    • Kuhn, M.1    Johnson, K.2
  • 21
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 8:6 (2013), 1–13.
    • (2013) PLoS ONE , vol.8 , Issue.6 , pp. 1-13
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 24
    • 31744431565 scopus 로고    scopus 로고
    • The staging of sepsis: understanding heterogeneity in treatment efficacy
    • Marshall, J.C., The staging of sepsis: understanding heterogeneity in treatment efficacy. Crit. Care, 9(6), 2005, 626.
    • (2005) Crit. Care , vol.9 , Issue.6 , pp. 626
    • Marshall, J.C.1
  • 25
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • 26094 EP – 05
    • Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scient. Rep., 6, 2016 26094 EP – 05.
    • (2016) Scient. Rep. , vol.6
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 26
    • 80055046324 scopus 로고    scopus 로고
    • Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring
    • Moorman, J.R., Delos, J.B., Flower, A.A., Cao, H., Kovatchev, B.P., Richman, J.S., Lake, D.E., Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol. Measur. 32:11 (2011), 1821–1832.
    • (2011) Physiol. Measur. , vol.32 , Issue.11 , pp. 1821-1832
    • Moorman, J.R.1    Delos, J.B.2    Flower, A.A.3    Cao, H.4    Kovatchev, B.P.5    Richman, J.S.6    Lake, D.E.7
  • 27
    • 0042164384 scopus 로고    scopus 로고
    • Distributed EM algorithms for density estimation and clustering in sensor networks
    • Nowak, R.D., Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Sig. Process. 51:8 (2003), 2245–2253.
    • (2003) IEEE Trans. Sig. Process. , vol.51 , Issue.8 , pp. 2245-2253
    • Nowak, R.D.1
  • 28
    • 84901259802 scopus 로고    scopus 로고
    • Developing predictive models using electronic medical records: challenges and pitfalls
    • AMIA 2013, American Medical Informatics Association Annual Symposium.
    • C. Paxton, A. Niculescu-Mizil, S. Saria, Developing predictive models using electronic medical records: challenges and pitfalls, in: AMIA 2013, American Medical Informatics Association Annual Symposium, 2013.
    • (2013)
    • Paxton, C.1    Niculescu-Mizil, A.2    Saria, S.3
  • 30
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
    • The MIT Press
    • Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). 2005, The MIT Press.
    • (2005)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 31
    • 85041412529 scopus 로고    scopus 로고
    • Semi-supervised classification of texts using particle learning for probabilistic automata
    • Oxford University Press
    • Sales, A.P., Challis, C., Prenger, R., Merl, D., Semi-supervised classification of texts using particle learning for probabilistic automata. Bayesian Theory and Applications, 2013, Oxford University Press.
    • (2013) Bayesian Theory and Applications
    • Sales, A.P.1    Challis, C.2    Prenger, R.3    Merl, D.4
  • 33
    • 77951981110 scopus 로고    scopus 로고
    • Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy
    • Schnitt, S.J., Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod. Pathol. 23:S2 (2010), S60–S64.
    • (2010) Mod. Pathol. , vol.23 , Issue.S2 , pp. S60-S64
    • Schnitt, S.J.1
  • 37
    • 85041391274 scopus 로고    scopus 로고
    • Application-agnostic streaming bayesian inference via apache storm
    • International Conference on Big Data Analytics.
    • T. Wasson, A.P. Sales, Application-agnostic streaming bayesian inference via apache storm, in: International Conference on Big Data Analytics, 2014.
    • (2014)
    • Wasson, T.1    Sales, A.P.2
  • 38
    • 84958599888 scopus 로고    scopus 로고
    • Strategies for handling missing data in electronic health record derived data
    • Wells, B.J., Chagi, K.M., Nowacki, A.S., Kattan, M.W., Strategies for handling missing data in electronic health record derived data. eGEMs, 1(3), 2013.
    • (2013) eGEMs , vol.1 , Issue.3
    • Wells, B.J.1    Chagi, K.M.2    Nowacki, A.S.3    Kattan, M.W.4
  • 39
    • 84952015331 scopus 로고    scopus 로고
    • Learning data-driven patient risk stratification models for Clostridium difficile
    • Wiens, J., Campbell, W.N., Franklin, E.S., Guttag, J.V., Horvitz, E., Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infect Dis., 1(2), 2014, ofu045.
    • (2014) Open Forum Infect Dis. , vol.1 , Issue.2 , pp. ofu045
    • Wiens, J.1    Campbell, W.N.2    Franklin, E.S.3    Guttag, J.V.4    Horvitz, E.5
  • 40
    • 84979871458 scopus 로고    scopus 로고
    • Patient risk stratification with time-varying parameters: a multitask learning approach
    • Wiens, J., Guttag, J., Horvitz, E., Patient risk stratification with time-varying parameters: a multitask learning approach. J. Mach. Learn. Res. 17:1 (2016), 2797–2819.
    • (2016) J. Mach. Learn. Res. , vol.17 , Issue.1 , pp. 2797-2819
    • Wiens, J.1    Guttag, J.2    Horvitz, E.3
  • 41
    • 84946650481 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • Wilson, E.B., Probable inference, the law of succession, and statistical inference. J. Am. Statist. Assoc. 22 (1927), 209–212.
    • (1927) J. Am. Statist. Assoc. , vol.22 , pp. 209-212
    • Wilson, E.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.