메뉴 건너뛰기




Volumn 28, Issue 9, 2019, Pages 2768-2786

A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes

Author keywords

aggregate data; calibration; discrimination; evidence synthesis; Meta analysis; prediction; prognosis; systematic review; validation

Indexed keywords

ARTICLE; CALIBRATION; EUROSCORE; FRAMINGHAM RISK SCORE; HUMAN; META ANALYSIS; PREDICTION; PROGNOSIS; SYNTHESIS; SYSTEMATIC REVIEW; VALIDATION PROCESS; BAYES THEOREM; META ANALYSIS (TOPIC); METHODOLOGY; PROCEDURES; RISK ASSESSMENT; STATISTICAL MODEL;

EID: 85050571269     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280218785504     Document Type: Article
Times cited : (136)

References (68)
  • 1
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: what, why, and how?
    • Moons KGM, Royston P, Vergouwe Y, Prognosis and prognostic research: what, why, and how? BMJ 2009; 338: b375–b375.
    • (2009) BMJ , vol.338 , pp. b375
    • Moons, K.G.M.1    Royston, P.2    Vergouwe, Y.3
  • 2
    • 84874505367 scopus 로고    scopus 로고
    • Prognosis Research Strategy (PROGRESS) 3: prognostic model research
    • Steyerberg EW, Moons KGM, van der Windt DA, Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013; 10: e1001381–e1001381.
    • (2013) PLoS Med , vol.10 , pp. e1001381
    • Steyerberg, E.W.1    Moons, K.G.M.2    van der Windt, D.A.3
  • 4
    • 0032510639 scopus 로고    scopus 로고
    • Prediction of coronary heart disease using risk factor categories
    • Wilson PW, D’Agostino RB, Levy D, Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–1847.
    • (1998) Circulation , vol.97 , pp. 1837-1847
    • Wilson, P.W.1    D’Agostino, R.B.2    Levy, D.3
  • 5
    • 84969929958 scopus 로고    scopus 로고
    • Prediction models for cardiovascular disease risk in the general population: systematic review
    • Damen JAAG, Hooft L, Schuit E, Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ 2016; 353: i2416–i2416.
    • (2016) BMJ , vol.353
    • Damen, J.A.A.G.1    Hooft, L.2    Schuit, E.3
  • 6
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II. External validation, model updating, and impact assessment
    • Moons KGM, Kengne AP, Grobbee DE, Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98: 691–698.
    • (2012) Heart , vol.98 , pp. 691-698
    • Moons, K.G.M.1    Kengne, A.P.2    Grobbee, D.E.3
  • 7
    • 84922392234 scopus 로고    scopus 로고
    • Meta-analysis and aggregation of multiple published prediction models
    • Debray TP, Koffijberg H, Nieboer D, Meta-analysis and aggregation of multiple published prediction models. Stat Med 2014; 33: 2341–2362.
    • (2014) Stat Med , vol.33 , pp. 2341-2362
    • Debray, T.P.1    Koffijberg, H.2    Nieboer, D.3
  • 8
    • 4344696163 scopus 로고    scopus 로고
    • Validation and updating of predictive logistic regression models: a study on sample size and shrinkage
    • Steyerberg EW, Borsboom GJJM, van Houwelingen HC, Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004; 23: 2567–2586.
    • (2004) Stat Med , vol.23 , pp. 2567-2586
    • Steyerberg, E.W.1    Borsboom, G.J.J.M.2    van Houwelingen, H.C.3
  • 9
    • 84923527988 scopus 로고    scopus 로고
    • A new framework to enhance the interpretation of external validation studies of clinical prediction models
    • Debray TPA, Vergouwe Y, Koffijberg H, A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015; 68: 279–289.
    • (2015) J Clin Epidemiol , vol.68 , pp. 279-289
    • Debray, T.P.A.1    Vergouwe, Y.2    Koffijberg, H.3
  • 10
    • 77958090625 scopus 로고    scopus 로고
    • External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients
    • Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010; 172: 971–980.
    • (2010) Am J Epidemiol , vol.172 , pp. 971-980
    • Vergouwe, Y.1    Moons, K.G.M.2    Steyerberg, E.W.3
  • 11
    • 84899459258 scopus 로고    scopus 로고
    • External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
    • Collins GS, de Groot JA, Dutton S, External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 2014; 14: 40–40.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 40
    • Collins, G.S.1    de Groot, J.A.2    Dutton, S.3
  • 12
    • 84857667538 scopus 로고    scopus 로고
    • Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews
    • Geersing GJ, Bouwmeester W, Zuithoff P, Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. PLoS ONE 2012; 7: e32844–e32844.
    • (2012) PLoS ONE , vol.7 , pp. e32844
    • Geersing, G.J.1    Bouwmeester, W.2    Zuithoff, P.3
  • 13
    • 84908330513 scopus 로고    scopus 로고
    • Critical appraisal and data extraction for systematic reviews of clinical prediction modelling studies: the CHARMS checklist
    • Moons KGM, de Groot JA, Bouwmeester W, Critical appraisal and data extraction for systematic reviews of clinical prediction modelling studies: the CHARMS checklist. PLoS Med 2014; 11: e1001744–e1001744.
    • (2014) PLoS Med , vol.11 , pp. e1001744
    • Moons, K.G.M.1    de Groot, J.A.2    Bouwmeester, W.3
  • 14
    • 85009129532 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prediction model performance
    • Debray TPA, Damen JAAG, Snell KIE, A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017; 356: i6460–i6460.
    • (2017) BMJ , vol.356 , pp. i6460
    • Debray, T.P.A.1    Damen, J.A.A.G.2    Snell, K.I.E.3
  • 16
    • 84861556816 scopus 로고    scopus 로고
    • Reporting and methods in clinical prediction research: a systematic review
    • Bouwmeester W, Zuithoff NPA, Mallett S, Reporting and methods in clinical prediction research: a systematic review. PLoS Med 2012; 9: 1–12.
    • (2012) PLoS Med , vol.9 , pp. 1-12
    • Bouwmeester, W.1    Zuithoff, N.P.A.2    Mallett, S.3
  • 17
    • 84919974276 scopus 로고    scopus 로고
    • Performance of the European System for Cardiac Operative Risk Evaluation II: a meta-analysis of 22 studies involving 145,592 cardiac surgery procedures
    • Guida P, Mastro F, Scrascia G, Performance of the European System for Cardiac Operative Risk Evaluation II: a meta-analysis of 22 studies involving 145,592 cardiac surgery procedures. J Thorac Cardiovasc Surg 2014; 148: 3049–3057.e1.
    • (2014) J Thorac Cardiovasc Surg , vol.148
    • Guida, P.1    Mastro, F.2    Scrascia, G.3
  • 18
    • 85050563340 scopus 로고    scopus 로고
    • Performance of the Framingham risk models and pooled cohort equations: a systematic review and meta-analysis
    • Under review (submitted
    • Damen JAAG, Pajouheshnia R, Heus P, Performance of the Framingham risk models and pooled cohort equations: a systematic review and meta-analysis. PLOS ONE 2018. Under review (submitted).
    • (2018) PLOS ONE
    • Damen, J.A.A.G.1    Pajouheshnia, R.2    Heus, P.3
  • 19
    • 1842466312 scopus 로고    scopus 로고
    • Parameters behind nonparametric statistics: Kendalls tau, Somers D and median differences
    • Newson R. Parameters behind nonparametric statistics: Kendalls tau, Somers D and median differences. Stata J 2002; 2: 45–64.
    • (2002) Stata J , vol.2 , pp. 45-64
    • Newson, R.1
  • 20
    • 84862319389 scopus 로고    scopus 로고
    • Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable
    • Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol 2012; 12: 82–82.
    • (2012) BMC Med Res Methodol , vol.12 , pp. 82
    • Austin, P.C.1    Steyerberg, E.W.2
  • 21
    • 84944363874 scopus 로고
    • Evaluating the yield of medical tests
    • Harrell FE, Califf RM, Pryor DB, Evaluating the yield of medical tests. JAMA 1982; 247: 2543–2546.
    • (1982) JAMA , vol.247 , pp. 2543-2546
    • Harrell, F.E.1    Califf, R.M.2    Pryor, D.B.3
  • 22
    • 85049154919 scopus 로고    scopus 로고
    • Quantifying predictive accuracy in survival models
    • Lirette ST, Aban I. Quantifying predictive accuracy in survival models. J Nucl Cardiol 2015; 24: 1998–2003. DOI:10.1007/s12350-015-0296-z.
    • (2015) J Nucl Cardiol , vol.24 , pp. 1998-2003
    • Lirette, S.T.1    Aban, I.2
  • 23
    • 85020744103 scopus 로고    scopus 로고
    • Predictive accuracy of novel risk factors and markers: a simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model
    • 0962280214567141
    • Austin PC, Pencinca MJ, Steyerberg EW. Predictive accuracy of novel risk factors and markers: a simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model. Stat Methods Med Res 2015; 26: 1053–1077. DOI:10.1177/ 0962280214567141.
    • (2015) Stat Methods Med Res , vol.26 , pp. 1053-1077
    • Austin, P.C.1    Pencinca, M.J.2    Steyerberg, E.W.3
  • 24
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004; 23: 723–748.
    • (2004) Stat Med , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 25
    • 84944065233 scopus 로고    scopus 로고
    • Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
    • Jinks RC, Royston P, Parmar MKB. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol 2015; 15: 82–82.
    • (2015) BMC Med Res Methodol , vol.15 , pp. 82
    • Jinks, R.C.1    Royston, P.2    Parmar, M.K.B.3
  • 26
    • 84933514328 scopus 로고    scopus 로고
    • Covariate-adjusted measures of discrimination for survival data
    • White IR, Rapsomaniki E. Emerging Risk Factors Collaboration. Covariate-adjusted measures of discrimination for survival data. Biom J 2015; 57: 592–613.
    • (2015) Biom J , vol.57 , pp. 592-613
    • White, I.R.1    Rapsomaniki, E.2
  • 27
    • 85018653283 scopus 로고    scopus 로고
    • Time-dependent ROC curve analysis in medical research: current methods and applications
    • Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med Res Methodol 2017; 17: 53–53.
    • (2017) BMC Med Res Methodol , vol.17 , pp. 53
    • Kamarudin, A.N.1    Cox, T.2    Kolamunnage-Dona, R.3
  • 28
    • 84883365130 scopus 로고    scopus 로고
    • Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring
    • Blanche P, Dartigues JF, Jacqmin-Gadda H. Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. Biom J 2013; 55: 687–704.
    • (2013) Biom J , vol.55 , pp. 687-704
    • Blanche, P.1    Dartigues, J.F.2    Jacqmin-Gadda, H.3
  • 29
    • 31744437906 scopus 로고    scopus 로고
    • Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation
    • Newcombe RG. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation. Stat Med 2006; 25: 559–573.
    • (2006) Stat Med , vol.25 , pp. 559-573
    • Newcombe, R.G.1
  • 30
    • 85043710768 scopus 로고    scopus 로고
    • Meta-analysis of prediction model performance across multiple studies: which scale helps ensure between-study normality for the C -statistic and calibration measures?
    • Snell KI, Ensor J, Debray TP, Meta-analysis of prediction model performance across multiple studies: which scale helps ensure between-study normality for the C -statistic and calibration measures? Stat Meth Med Res 2017, pp. 096228021770567–096228021770567. DOI:10.1177/0962280217705678.
    • (2017) Stat Meth Med Res
    • Snell, K.I.1    Ensor, J.2    Debray, T.P.3
  • 31
    • 84952496879 scopus 로고
    • A note on the delta method
    • Oehlert GW. A note on the delta method. Am Stat 1992; 46: 27–27.
    • (1992) Am Stat , vol.46 , pp. 27
    • Oehlert, G.W.1
  • 32
    • 84859007967 scopus 로고    scopus 로고
    • How to obtain the P value from a confidence interval
    • Altman DG, Bland JM. How to obtain the P value from a confidence interval. BMJ 2011; 343: d2304–d2304.
    • (2011) BMJ , vol.343 , pp. d2304
    • Altman, D.G.1    Bland, J.M.2
  • 33
    • 84881515229 scopus 로고    scopus 로고
    • The new EuroSCORE II does not improve prediction of mortality in high-risk patients undergoing cardiac surgery: a collaborative analysis of two European centres
    • discussion 1011
    • Howell NJ, Head SJ, Freemantle N, The new EuroSCORE II does not improve prediction of mortality in high-risk patients undergoing cardiac surgery: a collaborative analysis of two European centres. Eur J Cardiothorac Surg 2013; 44: 1006–1011; discussion 1011.
    • (2013) Eur J Cardiothorac Surg , vol.44 , pp. 1006-1011
    • Howell, N.J.1    Head, S.J.2    Freemantle, N.3
  • 34
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128–138.
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 35
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Cox DR. Two further applications of a model for binary regression. Biometrika 1958; 45: 562–565.
    • (1958) Biometrika , vol.45 , pp. 562-565
    • Cox, D.R.1
  • 36
    • 7544244484 scopus 로고
    • A note on the method for finding variance formulae
    • Dorfman R. A note on the method for finding variance formulae. Biometric Bull 1938; 1: 129–137.
    • (1938) Biometric Bull , vol.1 , pp. 129-137
    • Dorfman, R.1
  • 37
    • 80052695262 scopus 로고    scopus 로고
    • Original and REGICOR Framingham functions in a nondiabetic population of a Spanish health care center: a validation study
    • Buitrago F, Calvo-Hueros JI, Can-Barroso L, Original and REGICOR Framingham functions in a nondiabetic population of a Spanish health care center: a validation study. Ann Fam Med 2011; 9: 431–438.
    • (2011) Ann Fam Med , vol.9 , pp. 431-438
    • Buitrago, F.1    Calvo-Hueros, J.I.2    Can-Barroso, L.3
  • 38
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Software 2010; 36: 1–48. DOI:10.18637/jss.v036.i03.
    • (2010) J Stat Software , vol.36 , pp. 1-48
    • Viechtbauer, W.1
  • 40
    • 85101510947 scopus 로고    scopus 로고
    • A basic introduction to fixed-effect and random-effects models for meta-analysis
    • Borenstein M, Hedges LV, Higgins JPT, A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Meth 2010; 1: 97–111.
    • (2010) Res Synth Meth , vol.1 , pp. 97-111
    • Borenstein, M.1    Hedges, L.V.2    Higgins, J.P.T.3
  • 41
    • 85018488352 scopus 로고    scopus 로고
    • Impact of correlation of predictors on discrimination of risk models in development and external populations
    • Kundu S, Mazumdar M, Ferket B. Impact of correlation of predictors on discrimination of risk models in development and external populations. BMC Med Res Methodol 2017; 17: 63–63.
    • (2017) BMC Med Res Methodol , vol.17 , pp. 63
    • Kundu, S.1    Mazumdar, M.2    Ferket, B.3
  • 42
    • 84978630481 scopus 로고    scopus 로고
    • Assessing discriminative performance at external validation of clinical prediction models
    • Nieboer D, van der Ploeg T, Steyerberg EW. Assessing discriminative performance at external validation of clinical prediction models. PLoS ONE 2016; 11: e0148820–e0148820.
    • (2016) PLoS ONE , vol.11 , pp. e0148820
    • Nieboer, D.1    van der Ploeg, T.2    Steyerberg, E.W.3
  • 43
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Hamza TH, Zdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 2010; 29: 3046–3067.
    • (2010) Stat Med , vol.29 , pp. 3046-3067
    • Stijnen, T.1    Hamza, T.H.2    Zdemir, P.3
  • 44
  • 45
    • 84959297600 scopus 로고    scopus 로고
    • Methods to estimate the between-study variance and its uncertainty in meta-analysis
    • Veroniki AA, Jackson D, Viechtbauer W, Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Meth 2016; 7: 55–79.
    • (2016) Res Synth Meth , vol.7 , pp. 55-79
    • Veroniki, A.A.1    Jackson, D.2    Viechtbauer, W.3
  • 46
    • 84990932195 scopus 로고    scopus 로고
    • Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation
    • Partlett C, Riley RD. Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med 2017; 36: 301–317.
    • (2017) Stat Med , vol.36 , pp. 301-317
    • Partlett, C.1    Riley, R.D.2
  • 47
    • 84988478557 scopus 로고    scopus 로고
    • Random-effects meta-analysis of inconsistent effects: a time for change
    • Cornell JE, Mulrow CD, Localio R, Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014; 160: 267–270.
    • (2014) Ann Intern Med , vol.160 , pp. 267-270
    • Cornell, J.E.1    Mulrow, C.D.2    Localio, R.3
  • 48
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011; 342: d549–d549.
    • (2011) BMJ , vol.342 , pp. d549
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 49
    • 33645315892 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiological research: I. Foundations and basic methods
    • Greenland S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int J Epidemiol 2006; 35: 765–775.
    • (2006) Int J Epidemiol , vol.35 , pp. 765-775
    • Greenland, S.1
  • 52
    • 85002427091 scopus 로고    scopus 로고
    • Bayesian estimation in random effects meta-analysis using a non-informative prior
    • Bodnar O, Link A, Arendack B, Bayesian estimation in random effects meta-analysis using a non-informative prior. Stat Med 2017; 36: 378–399.
    • (2017) Stat Med , vol.36 , pp. 378-399
    • Bodnar, O.1    Link, A.2    Arendack, B.3
  • 53
    • 84922218560 scopus 로고    scopus 로고
    • Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis
    • Turner RM, Jackson D, Wei Y, Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med 2015; 34: 984–998.
    • (2015) Stat Med , vol.34 , pp. 984-998
    • Turner, R.M.1    Jackson, D.2    Wei, Y.3
  • 54
    • 85017337654 scopus 로고    scopus 로고
    • Penalising model component complexity: a principled, practical approach to constructing priors
    • Simpson D, Rue H, Riebler A, Penalising model component complexity: a principled, practical approach to constructing priors. Stat Sci 2017; 32: 1–28.
    • (2017) Stat Sci , vol.32 , pp. 1-28
    • Simpson, D.1    Rue, H.2    Riebler, A.3
  • 55
    • 34447343362 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiological research. II. Regression analysis
    • Greenland S. Bayesian perspectives for epidemiological research. II. Regression analysis. Int J Epidemiol 2007; 36: 195–202.
    • (2007) Int J Epidemiol , vol.36 , pp. 195-202
    • Greenland, S.1
  • 56
    • 85041945694 scopus 로고    scopus 로고
    • Bayesian bivariate meta-analysis of correlated effects: Impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences
    • Burke DL, Bujkiewicz S, Riley RD. Bayesian bivariate meta-analysis of correlated effects: Impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences. Stat Meth Med Res 2018; 27: 428–450. DOI: 10.1177/0962280216631361.
    • (2018) Stat Meth Med Res , vol.27 , pp. 428-450
    • Burke, D.L.1    Bujkiewicz, S.2    Riley, R.D.3
  • 57
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert PC, Sutton AJ, Burton PR, How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med 2005; 24: 2401–2428.
    • (2005) Stat Med , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3
  • 59
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayes Analys 2006; 1: 515–534.
    • (2006) Bayes Analys , vol.1 , pp. 515-534
    • Gelman, A.1
  • 60
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Science 1992; 7: 457–472.
    • (1992) Stat Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 61
    • 84896692640 scopus 로고    scopus 로고
    • Assessing risk prediction models using individual participant data from multiple studies
    • Pennells L, Kaptoge S, White IR, Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2013; 179: 621–632.
    • (2013) Am J Epidemiol , vol.179 , pp. 621-632
    • Pennells, L.1    Kaptoge, S.2    White, I.R.3
  • 62
    • 84953776489 scopus 로고    scopus 로고
    • Design characteristics influence performance of clinical prediction rules in validation: a meta-epidemiological study
    • Ban JW, Emparanza JI, Urreta I, Design characteristics influence performance of clinical prediction rules in validation: a meta-epidemiological study. PLoS ONE 2016; 11: e0145779–e0145779.
    • (2016) PLoS ONE , vol.11 , pp. e0145779
    • Ban, J.W.1    Emparanza, J.I.2    Urreta, I.3
  • 63
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 2002; 21: 589–624.
    • (2002) Stat Med , vol.21 , pp. 589-624
    • van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 64
    • 77952026461 scopus 로고    scopus 로고
    • Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures
    • Article 16
    • Austin PC. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. Int J Biostat 2010; 6: Article 16.
    • (2010) Int J Biostat , vol.6
    • Austin, P.C.1
  • 65
    • 34047237099 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in combining results of studies
    • Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med 2007; 26: 1964–1981.
    • (2007) Stat Med , vol.26 , pp. 1964-1981
    • Sidik, K.1    Jonkman, J.N.2
  • 66
    • 84963649819 scopus 로고    scopus 로고
    • Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies
    • Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Meth 2017; 8: 181–198. DOI: 10.1002/jrsm.1198.
    • (2017) Res Synth Meth , vol.8 , pp. 181-198
    • Langan, D.1    Higgins, J.P.T.2    Simmonds, M.3
  • 67
    • 84956958671 scopus 로고    scopus 로고
    • Get real in individual participant data (IPD) meta-analysis: a review of the methodology
    • Debray TPA, Moons KGM, van Valkenhoef G, Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Res Synth Meth 2015; 6: 239–309.
    • (2015) Res Synth Meth , vol.6 , pp. 239-309
    • Debray, T.P.A.1    Moons, K.G.M.2    van Valkenhoef, G.3
  • 68
    • 84973349401 scopus 로고    scopus 로고
    • A new concordance measure for risk prediction models in external validation settings
    • van Klaveren D, Gnen M, Steyerberg EW, A new concordance measure for risk prediction models in external validation settings. Stat Med 2016; 35: 4136–4152. DOI:10.1002/sim.6997.
    • (2016) Stat Med , vol.35 , pp. 4136-4152
    • van Klaveren, D.1    Gnen, M.2    Steyerberg, E.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.