메뉴 건너뛰기




Volumn 36, Issue 2, 2017, Pages 301-317

Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation

Author keywords

coverage; meta analysis; random effects; REML; simulation

Indexed keywords

CONFIDENCE INTERVAL; HUMAN; MAXIMUM LIKELIHOOD METHOD; META ANALYSIS; PREDICTION; SCIENTIST; UNCERTAINTY; BIOSTATISTICS; BLOOD PRESSURE; COMPUTER SIMULATION; DRUG EFFECTS; HYPERTENSION; META ANALYSIS (TOPIC); PATHOPHYSIOLOGY; RANDOMIZED CONTROLLED TRIAL (TOPIC); SAMPLE SIZE; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; TREATMENT OUTCOME;

EID: 84990932195     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7140     Document Type: Article
Times cited : (134)

References (21)
  • 2
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins J, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011; 342:d549.
    • (2011) BMJ , vol.342 , pp. d549
    • Riley, R.D.1    Higgins, J.2    Deeks, J.J.3
  • 4
    • 85001722840 scopus 로고    scopus 로고
    • On Kenward–Roger confidence intervals for common mean in interlaboratory trials
    • In, Frollo I, Tysler M, Plackova A, (eds)., Institute of Measurement Science, Slovak Academy of Sciences, Bratislava
    • Savin A, Wimmer G, Witkovskỳ V. On Kenward–Roger confidence intervals for common mean in interlaboratory trials. In Measurement 2003. Proceedings of the 4th International Conference on Measurement, Frollo I, Tysler M, Plackova A  (eds). Institute of Measurement Science, Slovak Academy of Sciences: Bratislava 2003; 79–82.
    • (2003) Measurement 2003. Proceedings of the 4th International Conference on Measurement , pp. 79-82
    • Savin, A.1    Wimmer, G.2    Witkovskỳ, V.3
  • 5
    • 0037110527 scopus 로고    scopus 로고
    • A simple confidence interval for meta-analysis
    • Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Statistics in Medicine 2002; 21(21):3153–3159.
    • (2002) Statistics in Medicine , vol.21 , Issue.21 , pp. 3153-3159
    • Sidik, K.1    Jonkman, J.N.2
  • 6
    • 33646897928 scopus 로고    scopus 로고
    • Robust variance estimation for random effects meta-analysis
    • Sidik K, Jonkman JN. Robust variance estimation for random effects meta-analysis. Computational Statistics & Data Analysis 2006; 50(12):3681–3701.
    • (2006) Computational Statistics & Data Analysis , vol.50 , Issue.12 , pp. 3681-3701
    • Sidik, K.1    Jonkman, J.N.2
  • 7
    • 0035973279 scopus 로고    scopus 로고
    • On tests of the overall treatment effect in meta-analysis with normally distributed responses
    • Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statistics in Medicine 2001; 20(12):1771–1782.
    • (2001) Statistics in Medicine , vol.20 , Issue.12 , pp. 1771-1782
    • Hartung, J.1    Knapp, G.2
  • 8
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method
    • IntHout J, Ioannidis JP, Borm GF. The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method. BMC Medical Research Methodology 2014; 14(1):25.
    • (2014) BMC Medical Research Methodology , vol.14 , Issue.1 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.2    Borm, G.F.3
  • 9
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997; 53:983–997.
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 11
    • 0026009636 scopus 로고
    • A general parametric approach to the meta-analysis of randomized clinical trials
    • Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Statistics in Medicine 1991; 10(11):1665–1677.
    • (1991) Statistics in Medicine , vol.10 , Issue.11 , pp. 1665-1677
    • Whitehead, A.1    Whitehead, J.2
  • 12
    • 84963850958 scopus 로고    scopus 로고
    • Hartung–Knapp–Sidik–Jonkman approach and its modification for random-effects meta-analysis with few studies
    • Röver C, Knapp G, Friede T. Hartung–Knapp–Sidik–Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Medical Research Methodology 2015; 15(1):99–105.
    • (2015) BMC Medical Research Methodology , vol.15 , Issue.1 , pp. 99-105
    • Röver, C.1    Knapp, G.2    Friede, T.3
  • 13
    • 85016769798 scopus 로고    scopus 로고
    • Two-stage individual participant data meta-analysis and generalized forest plots
    • Fisher DJ. Two-stage individual participant data meta-analysis and generalized forest plots. Stata Journal 2015; 15(2):369–396.
    • (2015) Stata Journal , vol.15 , Issue.2 , pp. 369-396
    • Fisher, D.J.1
  • 14
    • 18244368464 scopus 로고    scopus 로고
    • Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome
    • Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 2005; 45(5):907–913.
    • (2005) Hypertension , vol.45 , Issue.5 , pp. 907-913
    • Wang, J.G.1    Staessen, J.A.2    Franklin, S.S.3    Fagard, R.4    Gueyffier, F.5
  • 16
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Statistics in Medicine 2008; 27(3):418–434.
    • (2008) Statistics in Medicine , vol.27 , Issue.3 , pp. 418-434
    • Lee, K.J.1    Thompson, S.G.2
  • 18
    • 84864508284 scopus 로고    scopus 로고
    • Predicting the extent of heterogeneity in meta-analysis, using empirical data from the cochrane database of systematic reviews
    • Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the cochrane database of systematic reviews. International Journal of Epidemiology 2012; 41(3):818–827.
    • (2012) International Journal of Epidemiology , vol.41 , Issue.3 , pp. 818-827
    • Turner, R.M.1    Davey, J.2    Clarke, M.J.3    Thompson, S.G.4    Higgins, J.P.5
  • 19
    • 43049146541 scopus 로고    scopus 로고
    • Confidence intervals for the overall effect size in random-effects meta-analysis
    • Sánchez-Meca J, Marín-Martínez F. Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods 2008; 13(1):31.
    • (2008) Psychological Methods , vol.13 , Issue.1 , pp. 31
    • Sánchez-Meca, J.1    Marín-Martínez, F.2
  • 20
    • 84938698393 scopus 로고    scopus 로고
    • An empirical comparison of heterogeneity variance estimators in 12894 meta-analyses
    • Langan D, Higgins J, Simmonds M. An empirical comparison of heterogeneity variance estimators in 12894 meta-analyses. Research Synthesis Methods 2015; 6(2):195–205.
    • (2015) Research Synthesis Methods , vol.6 , Issue.2 , pp. 195-205
    • Langan, D.1    Higgins, J.2    Simmonds, M.3
  • 21
    • 43149101297 scopus 로고    scopus 로고
    • A new approach to outliers in meta-analysis
    • Baker R, Jackson D. A new approach to outliers in meta-analysis. Health Care Management Science 2008; 11(2):121–131.
    • (2008) Health Care Management Science , vol.11 , Issue.2 , pp. 121-131
    • Baker, R.1    Jackson, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.