메뉴 건너뛰기




Volumn 179, Issue 5, 2014, Pages 621-632

Assessing risk prediction models using individual participant data from multiple studies

(135)  Pennells, Lisa a   Kaptoge, Stephen a   White, Ian R a   Thompson, Simon G a   Wood, Angela M a   Tipping, Robert W b   Folsom, Aaron R b   Couper, David J b   Ballantyne, Christie M b   Coresh, Josef b   Goya Wannamethee, S b   Morris, Richard W b   Kiechl, Stefan b   Willeit, Johann b   Willeit, Peter b   Schett, Georg b   Ebrahim, Shah b   Lawlor, Debbie A b   Yarnell, John W b   Gallacher, John b   more..

b NONE

Author keywords

C index; Coronary heart disease; D measure; Individual participant data; Inverse variance; Meta analysis; Risk prediction; Weighting

Indexed keywords

C REACTIVE PROTEIN; CHOLESTEROL; HIGH DENSITY LIPOPROTEIN CHOLESTEROL;

EID: 84896692640     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwt298     Document Type: Article
Times cited : (46)

References (43)
  • 1
    • 0033574245 scopus 로고    scopus 로고
    • Assessing the generalizability of prognostic information
    • Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130(6): 515-524.
    • (1999) Ann Intern Med , vol.130 , Issue.6 , pp. 515-524
    • Justice, A.C.1    Covinsky, K.E.2    Berlin, J.A.3
  • 2
    • 1542506052 scopus 로고    scopus 로고
    • Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
    • Royston P, Parmar MK, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat Med. 2004;23(6): 907-926.
    • (2004) Stat Med , vol.23 , Issue.6 , pp. 907-926
    • Royston, P.1    Parmar, M.K.2    Sylvester, R.3
  • 3
    • 78149260793 scopus 로고    scopus 로고
    • Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies
    • Thompson S, Kaptoge S, White I, et al. Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies. Int J Epidemiol. 2010;39(5): 1345-1359.
    • (2010) Int J Epidemiol , vol.39 , Issue.5 , pp. 1345-1359
    • Thompson, S.1    Kaptoge, S.2    White, I.3
  • 4
    • 63049122495 scopus 로고    scopus 로고
    • Measures to assess the prognostic ability of the stratified Cox proportional hazards model
    • The Fibrinogen Studies Collaboration. Measures to assess the prognostic ability of the stratified Cox proportional hazards model. Stat Med. 2009;28(3): 389-411.
    • (2009) Stat Med , vol.28 , Issue.3 , pp. 389-411
  • 5
    • 0033305659 scopus 로고    scopus 로고
    • Determinants of cardiovascular disease in the Asia Pacific region: Protocol for a collaborative overview of cohort studies
    • Asia Pacific Cohort Studies Collaboration. Determinants of cardiovascular disease in the Asia Pacific region: protocol for a collaborative overview of cohort studies. Cardiovasc Dis Prev. 1999;2: 281-289.
    • (1999) Cardiovasc Dis Prev , vol.2 , pp. 281-289
  • 6
    • 1642634952 scopus 로고    scopus 로고
    • Breast cancer and abortion: Collaborative reanalysis of data from 53 epidemiological studies, including 83 000 women with breast cancer from 16 countries
    • Beral V, Bull D, Doll R, et al. Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83 000 women with breast cancer from 16 countries. Lancet. 2004;363(9414): 1007-1016.
    • (2004) Lancet , vol.363 , Issue.9414 , pp. 1007-1016
    • Beral, V.1    Bull, D.2    Doll, R.3
  • 7
    • 1542725074 scopus 로고    scopus 로고
    • Diet and cancer-the European Prospective Investigation into Cancer and Nutrition
    • Bingham S, Riboli E. Diet and cancer-the European Prospective Investigation into Cancer and Nutrition. Nat Rev Cancer. 2004;4(3): 206-215.
    • (2004) Nat Rev Cancer , vol.4 , Issue.3 , pp. 206-215
    • Bingham, S.1    Riboli, E.2
  • 8
    • 0037130887 scopus 로고    scopus 로고
    • Cancer incidence in BRCA1 mutation carriers
    • Thompson D, Easton DF, Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18): 1358-1365.
    • (2002) J Natl Cancer Inst , vol.94 , Issue.18 , pp. 1358-1365
    • Thompson, D.1    Easton, D.F.2
  • 9
    • 41849144111 scopus 로고    scopus 로고
    • The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
    • Elliott P, Peakman TC. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37(2): 234-244.
    • (2008) Int J Epidemiol , vol.37 , Issue.2 , pp. 234-244
    • Elliott, P.1    Peakman, T.C.2
  • 10
    • 36549034768 scopus 로고    scopus 로고
    • Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths
    • Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602): 1829-1839.
    • (2007) Lancet , vol.370 , Issue.9602 , pp. 1829-1839
    • Lewington, S.1    Whitlock, G.2    Clarke, R.3
  • 11
    • 33745608452 scopus 로고    scopus 로고
    • Methods for pooling results of epidemiologic studies: The Pooling Project of Prospective Studies of Diet and Cancer
    • Smith-Warner SA, Spiegelman D, Ritz J, et al. Methods for pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and Cancer. Am J Epidemiol. 2006;163(11): 1053-1064.
    • (2006) Am J Epidemiol , vol.163 , Issue.11 , pp. 1053-1064
    • Smith-Warner, S.A.1    Spiegelman, D.2    Ritz, J.3
  • 12
    • 33747115419 scopus 로고    scopus 로고
    • The association between common vitamin D receptor gene variations and osteoporosis: A participant-level meta-analysis
    • Uitterlinden AG, Ralston SH, Brandi ML, et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern Med. 2006;145(4): 255-264.
    • (2006) Ann Intern Med , vol.145 , Issue.4 , pp. 255-264
    • Uitterlinden, A.G.1    Ralston, S.H.2    Brandi, M.L.3
  • 13
    • 84860786143 scopus 로고    scopus 로고
    • Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate
    • Matsushita K, Mahmoodi BK,Woodward M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307(18): 1941-1951.
    • (2012) JAMA , vol.307 , Issue.18 , pp. 1941-1951
    • Matsushita, K.1    Mahmoodi, B.K.2    Woodward, M.3
  • 14
    • 38349050019 scopus 로고    scopus 로고
    • The Emerging Risk Factors Collaboration: Analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases
    • Danesh J, Erqou S,Walker M, et al. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007;22(12): 839-869.
    • (2007) Eur J Epidemiol , vol.22 , Issue.12 , pp. 839-869
    • Danesh, J.1    Erqou, S.2    Walker, M.3
  • 15
    • 79953163759 scopus 로고    scopus 로고
    • Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. The Emerging Risk Factors Collaboration
    • Wormser D, Kaptoge S, Di AE, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. The Emerging Risk Factors Collaboration. Lancet. 2011;377(9771): 1085-1095.
    • (2011) Lancet , vol.377 , Issue.9771 , pp. 1085-1095
    • Wormser, D.1    Kaptoge, S.2    Di, A.E.3
  • 16
    • 84862502750 scopus 로고    scopus 로고
    • Lipid-related markers and cardiovascular disease prediction
    • The Emerging Risk Factors Collaboration. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307(23): 2499-2506.
    • (2012) JAMA , vol.307 , Issue.23 , pp. 2499-2506
  • 17
    • 84867164377 scopus 로고    scopus 로고
    • C-reactive protein, fibrinogen, and cardiovascular disease prediction. The Emerging Risk Factors Collaboration
    • Kaptoge S, Di Angelantonio E, Pennells L, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. The Emerging Risk Factors Collaboration. N Engl J Med. 2012;367(14): 1310-1320.
    • (2012) N Engl J Med , vol.367 , Issue.14 , pp. 1310-1320
    • Kaptoge, S.1    Di Angelantonio, E.2    Pennells, L.3
  • 18
    • 84968895427 scopus 로고
    • Regression models and life-tables [with discussion]
    • Cox DR. Regression models and life-tables [with discussion]. J R Stat Soc Ser B. 1972;34(2): 187-220.
    • (1972) J R Stat Soc Ser B , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 19
    • 68149160854 scopus 로고    scopus 로고
    • Multivariate random-effects meta-analysis
    • White IR. Multivariate random-effects meta-analysis. Stata J. 2009;9(1): 40-56.
    • (2009) Stata J , vol.9 , Issue.1 , pp. 40-56
    • White, I.R.1
  • 20
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate metaanalysis: Potential and promise
    • Jackson D, Riley R, White IR. Multivariate metaanalysis: potential and promise. Stat Med. 2011;30(20): 2481-2498.
    • (2011) Stat Med , vol.30 , Issue.20 , pp. 2481-2498
    • Jackson, D.1    Riley, R.2    White, I.R.3
  • 22
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4): 361-387.
    • (1996) Stat Med , vol.15 , Issue.4 , pp. 361-387
    • Harrell Jr, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 23
    • 84944363874 scopus 로고
    • Evaluating the yield of medical tests
    • Harrell FE Jr, Califf RM, Pryor DB, et al. Evaluating the yield of medical tests. JAMA. 1982;247(18): 2543-2546.
    • (1982) JAMA , vol.247 , Issue.18 , pp. 2543-2546
    • Harrell Jr, F.E.1    Califf, R.M.2    Pryor, D.B.3
  • 24
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med. 2004;23(5): 723-748.
    • (2004) Stat Med , vol.23 , Issue.5 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 25
    • 27944450863 scopus 로고    scopus 로고
    • Concordance probability and discriminatory power in proportional hazards regression
    • Gonen M, Heller G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika. 2005;92(4): 965-970.
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 965-970
    • Gonen, M.1    Heller, G.2
  • 26
    • 79954466848 scopus 로고    scopus 로고
    • On the C statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
    • Uno H, Cai T, Pencina MJ, et al. On the C statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10): 1105-1117.
    • (2011) Stat Med , vol.30 , Issue.10 , pp. 1105-1117
    • Uno, H.1    Cai, T.2    Pencina, M.J.3
  • 27
    • 33749374399 scopus 로고    scopus 로고
    • Confidence intervals for rank order statistics and their differences
    • Newson R. Confidence intervals for rank order statistics and their differences. Stata J. 2006;6(3): 309-334.
    • (2006) Stata J , vol.6 , Issue.3 , pp. 309-334
    • Newson, R.1
  • 28
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11): 1539-1558.
    • (2002) Stat Med , vol.21 , Issue.11 , pp. 1539-1558
    • Higgins, J.P.1    Thompson, S.G.2
  • 29
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342: d549.
    • (2011) BMJ , vol.342 , pp. d549
    • Riley, R.D.1    Higgins, J.P.2    Deeks, J.J.3
  • 30
    • 0037098178 scopus 로고    scopus 로고
    • How should meta-regression analyses be undertaken and interpreted?
    • Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11): 1559-1573.
    • (2002) Stat Med , vol.21 , Issue.11 , pp. 1559-1573
    • Thompson, S.G.1    Higgins, J.P.2
  • 31
    • 0031014135 scopus 로고    scopus 로고
    • Time-to-event analysis of longitudinal follow-up of a survey: Choice of the time-scale
    • Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1): 72-80.
    • (1997) Am J Epidemiol , vol.145 , Issue.1 , pp. 72-80
    • Korn, E.L.1    Graubard, B.I.2    Midthune, D.3
  • 32
    • 33847710702 scopus 로고    scopus 로고
    • Choice of time scale and its effect on significance of predictors in longitudinal studies
    • Pencina MJ, Larson MG, D’Agostino RB. Choice of time scale and its effect on significance of predictors in longitudinal studies. Stat Med. 2007;26(6): 1343-1359.
    • (2007) Stat Med , vol.26 , Issue.6 , pp. 1343-1359
    • Pencina, M.J.1    Larson, M.G.2    D’Agostino, R.B.3
  • 33
    • 11344283814 scopus 로고    scopus 로고
    • Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: A simulation study
    • Thiebaut AC, Benichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004;23(24): 3803-3820.
    • (2004) Stat Med , vol.23 , Issue.24 , pp. 3803-3820
    • Thiebaut, A.C.1    Benichou, J.2
  • 34
    • 84859514741 scopus 로고    scopus 로고
    • Risk prediction measures for case-cohort and nested case-control designs: An application to cardiovascular disease
    • Ganna A, Reilly M, de FU, et al. Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. Am J Epidemiol. 2012;175(7): 715-724.
    • (2012) Am J Epidemiol , vol.175 , Issue.7 , pp. 715-724
    • Ganna, A.1    Reilly, M.2    de, F.U.3
  • 35
    • 39849088138 scopus 로고    scopus 로고
    • Matching in studies of classification accuracy: Implications for analysis, efficiency, and assessment of incremental value
    • Janes H, Pepe MS. Matching in studies of classification accuracy: implications for analysis, efficiency, and assessment of incremental value. Biometrics. 2008;64(1): 1-9.
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 1-9
    • Janes, H.1    Pepe, M.S.2
  • 36
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2): 157-172.
    • (2008) Stat Med , vol.27 , Issue.2 , pp. 157-172
    • Pencina, M.J.1    D’Agostino, R.B.2    D’Agostino, R.B.3
  • 37
    • 78649477601 scopus 로고    scopus 로고
    • Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
    • Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1): 11-21.
    • (2011) Stat Med , vol.30 , Issue.1 , pp. 11-21
    • Pencina, M.J.1    D’Agostino, R.B.2    Steyerberg, E.W.3
  • 38
    • 33646515606 scopus 로고    scopus 로고
    • Explained variation for survival models
    • Royston P. Explained variation for survival models. Stata J. 2006;6(1): 83-96.
    • (2006) Stata J , vol.6 , Issue.1 , pp. 83-96
    • Royston, P.1
  • 40
    • 0033041455 scopus 로고    scopus 로고
    • A global goodness-of-fit statistic for Cox regression models
    • Parzen M, Lipsitz SR. A global goodness-of-fit statistic for Cox regression models. Biometrics. 1999;55(2): 580-584.
    • (1999) Biometrics , vol.55 , Issue.2 , pp. 580-584
    • Parzen, M.1    Lipsitz, S.R.2
  • 42
    • 0024998126 scopus 로고
    • Prognostic scores for detecting a high risk group: Estimating the sensitivity when applied to new data
    • Phillips AN, Thompson SG, Pocock SJ. Prognostic scores for detecting a high risk group: estimating the sensitivity when applied to new data. Stat Med. 1990;9(10): 1189-1198.
    • (1990) Stat Med , vol.9 , Issue.10 , pp. 1189-1198
    • Phillips, A.N.1    Thompson, S.G.2    Pocock, S.J.3
  • 43
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338: b2393.
    • (2009) BMJ , vol.338 , pp. b2393
    • Sterne, J.A.1    White, I.R.2    Carlin, J.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.