-
1
-
-
67651009834
-
-
New York, NY, Springer
-
Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating, New York, NY: Springer, 2010
-
(2010)
Clinical prediction models: a practical approach to development, validation, and updating
-
-
Steyerberg, E.W.1
-
3
-
-
0030069896
-
Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387
-
(1996)
Stat Med
, vol.15
, pp. 361-387
-
-
Harrell, F.E.1
Lee, K.L.2
Mark, D.B.3
-
4
-
-
84957076656
-
A calibration hierarchy for risk models was defined: from utopia to empirical data
-
Van Calster B, Nieboer D, Vergouwe Y, A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 2016; 74: 167–176
-
(2016)
J Clin Epidemiol
, vol.74
, pp. 167-176
-
-
Van Calster, B.1
Nieboer, D.2
Vergouwe, Y.3
-
5
-
-
84915818745
-
External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
-
Siontis GC, Tzoulaki I, Castaldi PJ, External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol 2015; 68: 25–34
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 25-34
-
-
Siontis, G.C.1
Tzoulaki, I.2
Castaldi, P.J.3
-
6
-
-
0033574245
-
Assessing the generalizability of prognostic information
-
Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999; 130: 515–524
-
(1999)
Ann Intern Med
, vol.130
, pp. 515-524
-
-
Justice, A.C.1
Covinsky, K.E.2
Berlin, J.A.3
-
7
-
-
0141514712
-
External validation is necessary in prediction research: a clinical example
-
Bleeker SE, Moll HA, Steyerberg EW, External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 2003; 56: 826–832
-
(2003)
J Clin Epidemiol
, vol.56
, pp. 826-832
-
-
Bleeker, S.E.1
Moll, H.A.2
Steyerberg, E.W.3
-
8
-
-
67650082402
-
Prognosis and prognostic research: validating a prognostic model
-
Altman DG, Vergouwe Y, Royston P, Prognosis and prognostic research: validating a prognostic model. Br Med J 2009; 338: b605–b605
-
(2009)
Br Med J
, vol.338
, pp. b605
-
-
Altman, D.G.1
Vergouwe, Y.2
Royston, P.3
-
9
-
-
84860159431
-
Risk prediction models: II. External validation, model updating, and impact assessment
-
Moons KG, Kengne AP, Grobbee DE, Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98: 691–698
-
(2012)
Heart
, vol.98
, pp. 691-698
-
-
Moons, K.G.1
Kengne, A.P.2
Grobbee, D.E.3
-
10
-
-
84923527988
-
A new framework to enhance the interpretation of external validation studies of clinical prediction models
-
Debray TP, Vergouwe Y, Koffijberg H, A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015; 68: 279–289
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 279-289
-
-
Debray, T.P.1
Vergouwe, Y.2
Koffijberg, H.3
-
11
-
-
84946072388
-
Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use
-
Debray TP, Riley RD, Rovers MM, Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015; 12: e1001886–e1001886
-
(2015)
PLoS Med
, vol.12
, pp. e1001886
-
-
Debray, T.P.1
Riley, R.D.2
Rovers, M.M.3
-
12
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
-
Riley RD, Ensor J, Snell KI, External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016; 353: i3140–i3140
-
(2016)
BMJ
, vol.353
, pp. i3140
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.3
-
13
-
-
84952631019
-
Prediction models need appropriate internal, internal-external, and external validation
-
Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016; 69: 245–247
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 245-247
-
-
Steyerberg, E.W.1
Harrell, F.E.2
-
15
-
-
84896692640
-
Assessing risk prediction models using individual participant data from multiple studies
-
Pennells L, Kaptoge S, White IR, Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2014; 179: 621–632
-
(2014)
Am J Epidemiol
, vol.179
, pp. 621-632
-
-
Pennells, L.1
Kaptoge, S.2
White, I.R.3
-
16
-
-
85003766063
-
Geographic and temporal validity of prediction models: different approaches were useful to examine model performance
-
Austin PC, van Klaveren D, Vergouwe Y, Geographic and temporal validity of prediction models: different approaches were useful to examine model performance. J Clin Epidemiol 2016; 79: 76–85
-
(2016)
J Clin Epidemiol
, vol.79
, pp. 76-85
-
-
Austin, P.C.1
van Klaveren, D.2
Vergouwe, Y.3
-
17
-
-
85009129532
-
A guide to systematic review and meta-analysis of prediction model performance
-
Debray TP, Damen JA, Snell KI, A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017; 356: i6460–i6460
-
(2017)
BMJ
, vol.356
, pp. i6460
-
-
Debray, T.P.1
Damen, J.A.2
Snell, K.I.3
-
18
-
-
84973349401
-
A new concordance measure for risk prediction models in external validation settings
-
van Klaveren D, Gonen M, Steyerberg EW, A new concordance measure for risk prediction models in external validation settings. Stat Med 2016; 35: 4136–4152
-
(2016)
Stat Med
, vol.35
, pp. 4136-4152
-
-
van Klaveren, D.1
Gonen, M.2
Steyerberg, E.W.3
-
19
-
-
84952630758
-
Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
-
Snell KI, Hua H, Debray TP, Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol 2016; 69: 40–50
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 40-50
-
-
Snell, K.I.1
Hua, H.2
Debray, T.P.3
-
20
-
-
77958090625
-
External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients
-
Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010; 172: 971–980
-
(2010)
Am J Epidemiol
, vol.172
, pp. 971-980
-
-
Vergouwe, Y.1
Moons, K.G.M.2
Steyerberg, E.W.3
-
21
-
-
79955544813
-
Interpretation of random effects meta-analyses
-
Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. Br Med J 2011; 342: 964–967
-
(2011)
Br Med J
, vol.342
, pp. 964-967
-
-
Riley, R.D.1
Higgins, J.P.T.2
Deeks, J.J.3
-
23
-
-
43149101297
-
A new approach to outliers in meta-analysis
-
Baker R, Jackson D. A new approach to outliers in meta-analysis. Health Care Manag Sci 2008; 11: 121–131
-
(2008)
Health Care Manag Sci
, vol.11
, pp. 121-131
-
-
Baker, R.1
Jackson, D.2
-
24
-
-
38949124690
-
Flexible parametric models for random-effects distributions
-
Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Stat Med 2008; 27: 418–434
-
(2008)
Stat Med
, vol.27
, pp. 418-434
-
-
Lee, K.J.1
Thompson, S.G.2
-
25
-
-
47149088261
-
Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2
-
Hippisley-Cox J, Coupland C, Vinogradova Y, Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008; 336: 1475–1482
-
(2008)
BMJ
, vol.336
, pp. 1475-1482
-
-
Hippisley-Cox, J.1
Coupland, C.2
Vinogradova, Y.3
-
26
-
-
0003732572
-
-
New York, NY, Springer
-
Harrell FE. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis, New York, NY: Springer, 2001
-
(2001)
Regression modeling strategies with applications to linear models, logistic regression, and survival analysis
-
-
Harrell, F.E.1
-
27
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
28
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128–138
-
(2010)
Epidemiology
, vol.21
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
-
29
-
-
4344696163
-
Validation and updating of predictive logistic regression models: a study on sample size and shrinkage
-
Steyerberg EW, Borsboom GJJM, van Houwelingen HC, Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004; 23: 2567–2586
-
(2004)
Stat Med
, vol.23
, pp. 2567-2586
-
-
Steyerberg, E.W.1
Borsboom, G.J.J.M.2
van Houwelingen, H.C.3
-
30
-
-
0035973279
-
On tests of the overall treatment effect in meta-analysis with normally distributed responses
-
Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med 2001; 20: 1771–1782
-
(2001)
Stat Med
, vol.20
, pp. 1771-1782
-
-
Hartung, J.1
Knapp, G.2
-
31
-
-
0037110527
-
A simple confidence interval for meta-analysis
-
Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med 2002; 21: 3153–3159
-
(2002)
Stat Med
, vol.21
, pp. 3153-3159
-
-
Sidik, K.1
Jonkman, J.N.2
-
32
-
-
84899478410
-
The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method
-
IntHout J, Ioannidis JP, Borm GF. The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method. BMC Med Res Methodol 2014; 14: 25–25
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 25
-
-
IntHout, J.1
Ioannidis, J.P.2
Borm, G.F.3
-
33
-
-
84990932195
-
Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation
-
Partlett C, Riley RD. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med 2017; 36: 301–317
-
(2017)
Stat Med
, vol.36
, pp. 301-317
-
-
Partlett, C.1
Riley, R.D.2
-
34
-
-
43949083703
-
Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
-
Qin G, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Meth Med Res 2008; 17: 207–221
-
(2008)
Stat Meth Med Res
, vol.17
, pp. 207-221
-
-
Qin, G.1
Hotilovac, L.2
-
35
-
-
84903770504
-
-
Rockville, MD, Agency for Healthcare Research and Quality
-
Trikalinos TA, Trow P, Schmid CH. Simulation-based comparison of methods for meta-analysis of proportions and rates, Rockville, MD: Agency for Healthcare Research and Quality, 2013. Available at: www.effectivehealthcare.ahrq.gov/reports/final.cfm
-
(2013)
Simulation-based comparison of methods for meta-analysis of proportions and rates
-
-
Trikalinos, T.A.1
Trow, P.2
Schmid, C.H.3
-
36
-
-
22144442457
-
Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing
-
Oudega R, Moons KG, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing. Thromb Haemost 2005; 94: 200–205
-
(2005)
Thromb Haemost
, vol.94
, pp. 200-205
-
-
Oudega, R.1
Moons, K.G.2
Hoes, A.W.3
-
37
-
-
84859111279
-
A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance
-
Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat 2012; 132: 365–377
-
(2012)
Breast Cancer Res Treat
, vol.132
, pp. 365-377
-
-
Meads, C.1
Ahmed, I.2
Riley, R.D.3
-
38
-
-
84907972528
-
Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis
-
Terasawa T, Nishida H, Kato K, Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis. PLoS One 2014; 9: e109783–e109783
-
(2014)
PLoS One
, vol.9
, pp. e109783
-
-
Terasawa, T.1
Nishida, H.2
Kato, K.3
-
39
-
-
84954475129
-
Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis
-
Tangri N, Grams ME, Levey AS, Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 2016; 315: 164–174
-
(2016)
JAMA
, vol.315
, pp. 164-174
-
-
Tangri, N.1
Grams, M.E.2
Levey, A.S.3
-
40
-
-
84862319389
-
Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable
-
Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol 2012; 12: 82–82
-
(2012)
BMC Med Res Methodol
, vol.12
, pp. 82
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
41
-
-
24944498883
-
Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
-
Reitsma JB, Glas AS, Rutjes AWS, Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 58: 982–990
-
(2005)
J Clin Epidemiol
, vol.58
, pp. 982-990
-
-
Reitsma, J.B.1
Glas, A.S.2
Rutjes, A.W.S.3
-
42
-
-
33750696367
-
Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach
-
author reply 2–3
-
Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006; 59: 1331–1332; author reply 2–3
-
(2006)
J Clin Epidemiol
, vol.59
, pp. 1331-1332
-
-
Chu, H.1
Cole, S.R.2
-
43
-
-
1442351098
-
A new measure of prognostic separation in survival data
-
Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004; 23: 723–748
-
(2004)
Stat Med
, vol.23
, pp. 723-748
-
-
Royston, P.1
Sauerbrei, W.2
|