메뉴 건너뛰기




Volumn 27, Issue 11, 2018, Pages 3505-3522

Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures?

Author keywords

between study distribution; C statistic; calibration; discrimination; heterogeneity; meta analysis; performance statistics; simulation; Validation

Indexed keywords

ARTICLE; CALIBRATION; GENERAL PRACTICE; HUMAN; META ANALYSIS; NORMAL DISTRIBUTION; PREDICTION; QRISK SCORE; SIMULATION; STATISTICS; VALIDATION PROCESS; ALGORITHM; FORECASTING; MEDICAL RESEARCH; STATISTICAL MODEL; TREATMENT OUTCOME; VALIDATION STUDY;

EID: 85043710768     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280217705678     Document Type: Article
Times cited : (72)

References (43)
  • 3
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 4
    • 84957076656 scopus 로고    scopus 로고
    • A calibration hierarchy for risk models was defined: from utopia to empirical data
    • Van Calster B, Nieboer D, Vergouwe Y, A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 2016; 74: 167–176
    • (2016) J Clin Epidemiol , vol.74 , pp. 167-176
    • Van Calster, B.1    Nieboer, D.2    Vergouwe, Y.3
  • 5
    • 84915818745 scopus 로고    scopus 로고
    • External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
    • Siontis GC, Tzoulaki I, Castaldi PJ, External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol 2015; 68: 25–34
    • (2015) J Clin Epidemiol , vol.68 , pp. 25-34
    • Siontis, G.C.1    Tzoulaki, I.2    Castaldi, P.J.3
  • 6
    • 0033574245 scopus 로고    scopus 로고
    • Assessing the generalizability of prognostic information
    • Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999; 130: 515–524
    • (1999) Ann Intern Med , vol.130 , pp. 515-524
    • Justice, A.C.1    Covinsky, K.E.2    Berlin, J.A.3
  • 7
    • 0141514712 scopus 로고    scopus 로고
    • External validation is necessary in prediction research: a clinical example
    • Bleeker SE, Moll HA, Steyerberg EW, External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 2003; 56: 826–832
    • (2003) J Clin Epidemiol , vol.56 , pp. 826-832
    • Bleeker, S.E.1    Moll, H.A.2    Steyerberg, E.W.3
  • 8
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: validating a prognostic model
    • Altman DG, Vergouwe Y, Royston P, Prognosis and prognostic research: validating a prognostic model. Br Med J 2009; 338: b605–b605
    • (2009) Br Med J , vol.338 , pp. b605
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3
  • 9
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II. External validation, model updating, and impact assessment
    • Moons KG, Kengne AP, Grobbee DE, Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98: 691–698
    • (2012) Heart , vol.98 , pp. 691-698
    • Moons, K.G.1    Kengne, A.P.2    Grobbee, D.E.3
  • 10
    • 84923527988 scopus 로고    scopus 로고
    • A new framework to enhance the interpretation of external validation studies of clinical prediction models
    • Debray TP, Vergouwe Y, Koffijberg H, A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015; 68: 279–289
    • (2015) J Clin Epidemiol , vol.68 , pp. 279-289
    • Debray, T.P.1    Vergouwe, Y.2    Koffijberg, H.3
  • 11
    • 84946072388 scopus 로고    scopus 로고
    • Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use
    • Debray TP, Riley RD, Rovers MM, Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015; 12: e1001886–e1001886
    • (2015) PLoS Med , vol.12 , pp. e1001886
    • Debray, T.P.1    Riley, R.D.2    Rovers, M.M.3
  • 12
    • 84976645528 scopus 로고    scopus 로고
    • External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
    • Riley RD, Ensor J, Snell KI, External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016; 353: i3140–i3140
    • (2016) BMJ , vol.353 , pp. i3140
    • Riley, R.D.1    Ensor, J.2    Snell, K.I.3
  • 13
    • 84952631019 scopus 로고    scopus 로고
    • Prediction models need appropriate internal, internal-external, and external validation
    • Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016; 69: 245–247
    • (2016) J Clin Epidemiol , vol.69 , pp. 245-247
    • Steyerberg, E.W.1    Harrell, F.E.2
  • 15
    • 84896692640 scopus 로고    scopus 로고
    • Assessing risk prediction models using individual participant data from multiple studies
    • Pennells L, Kaptoge S, White IR, Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2014; 179: 621–632
    • (2014) Am J Epidemiol , vol.179 , pp. 621-632
    • Pennells, L.1    Kaptoge, S.2    White, I.R.3
  • 16
    • 85003766063 scopus 로고    scopus 로고
    • Geographic and temporal validity of prediction models: different approaches were useful to examine model performance
    • Austin PC, van Klaveren D, Vergouwe Y, Geographic and temporal validity of prediction models: different approaches were useful to examine model performance. J Clin Epidemiol 2016; 79: 76–85
    • (2016) J Clin Epidemiol , vol.79 , pp. 76-85
    • Austin, P.C.1    van Klaveren, D.2    Vergouwe, Y.3
  • 17
    • 85009129532 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prediction model performance
    • Debray TP, Damen JA, Snell KI, A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017; 356: i6460–i6460
    • (2017) BMJ , vol.356 , pp. i6460
    • Debray, T.P.1    Damen, J.A.2    Snell, K.I.3
  • 18
    • 84973349401 scopus 로고    scopus 로고
    • A new concordance measure for risk prediction models in external validation settings
    • van Klaveren D, Gonen M, Steyerberg EW, A new concordance measure for risk prediction models in external validation settings. Stat Med 2016; 35: 4136–4152
    • (2016) Stat Med , vol.35 , pp. 4136-4152
    • van Klaveren, D.1    Gonen, M.2    Steyerberg, E.W.3
  • 19
    • 84952630758 scopus 로고    scopus 로고
    • Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
    • Snell KI, Hua H, Debray TP, Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol 2016; 69: 40–50
    • (2016) J Clin Epidemiol , vol.69 , pp. 40-50
    • Snell, K.I.1    Hua, H.2    Debray, T.P.3
  • 20
    • 77958090625 scopus 로고    scopus 로고
    • External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients
    • Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010; 172: 971–980
    • (2010) Am J Epidemiol , vol.172 , pp. 971-980
    • Vergouwe, Y.1    Moons, K.G.M.2    Steyerberg, E.W.3
  • 21
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. Br Med J 2011; 342: 964–967
    • (2011) Br Med J , vol.342 , pp. 964-967
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 23
    • 43149101297 scopus 로고    scopus 로고
    • A new approach to outliers in meta-analysis
    • Baker R, Jackson D. A new approach to outliers in meta-analysis. Health Care Manag Sci 2008; 11: 121–131
    • (2008) Health Care Manag Sci , vol.11 , pp. 121-131
    • Baker, R.1    Jackson, D.2
  • 24
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Stat Med 2008; 27: 418–434
    • (2008) Stat Med , vol.27 , pp. 418-434
    • Lee, K.J.1    Thompson, S.G.2
  • 25
    • 47149088261 scopus 로고    scopus 로고
    • Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2
    • Hippisley-Cox J, Coupland C, Vinogradova Y, Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008; 336: 1475–1482
    • (2008) BMJ , vol.336 , pp. 1475-1482
    • Hippisley-Cox, J.1    Coupland, C.2    Vinogradova, Y.3
  • 27
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 28
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128–138
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 29
    • 4344696163 scopus 로고    scopus 로고
    • Validation and updating of predictive logistic regression models: a study on sample size and shrinkage
    • Steyerberg EW, Borsboom GJJM, van Houwelingen HC, Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004; 23: 2567–2586
    • (2004) Stat Med , vol.23 , pp. 2567-2586
    • Steyerberg, E.W.1    Borsboom, G.J.J.M.2    van Houwelingen, H.C.3
  • 30
    • 0035973279 scopus 로고    scopus 로고
    • On tests of the overall treatment effect in meta-analysis with normally distributed responses
    • Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med 2001; 20: 1771–1782
    • (2001) Stat Med , vol.20 , pp. 1771-1782
    • Hartung, J.1    Knapp, G.2
  • 31
    • 0037110527 scopus 로고    scopus 로고
    • A simple confidence interval for meta-analysis
    • Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med 2002; 21: 3153–3159
    • (2002) Stat Med , vol.21 , pp. 3153-3159
    • Sidik, K.1    Jonkman, J.N.2
  • 32
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method
    • IntHout J, Ioannidis JP, Borm GF. The Hartung–Knapp–Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian–Laird method. BMC Med Res Methodol 2014; 14: 25–25
    • (2014) BMC Med Res Methodol , vol.14 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.2    Borm, G.F.3
  • 33
    • 84990932195 scopus 로고    scopus 로고
    • Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation
    • Partlett C, Riley RD. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med 2017; 36: 301–317
    • (2017) Stat Med , vol.36 , pp. 301-317
    • Partlett, C.1    Riley, R.D.2
  • 34
    • 43949083703 scopus 로고    scopus 로고
    • Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
    • Qin G, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Meth Med Res 2008; 17: 207–221
    • (2008) Stat Meth Med Res , vol.17 , pp. 207-221
    • Qin, G.1    Hotilovac, L.2
  • 36
    • 22144442457 scopus 로고    scopus 로고
    • Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing
    • Oudega R, Moons KG, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing. Thromb Haemost 2005; 94: 200–205
    • (2005) Thromb Haemost , vol.94 , pp. 200-205
    • Oudega, R.1    Moons, K.G.2    Hoes, A.W.3
  • 37
    • 84859111279 scopus 로고    scopus 로고
    • A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance
    • Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat 2012; 132: 365–377
    • (2012) Breast Cancer Res Treat , vol.132 , pp. 365-377
    • Meads, C.1    Ahmed, I.2    Riley, R.D.3
  • 38
    • 84907972528 scopus 로고    scopus 로고
    • Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis
    • Terasawa T, Nishida H, Kato K, Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis. PLoS One 2014; 9: e109783–e109783
    • (2014) PLoS One , vol.9 , pp. e109783
    • Terasawa, T.1    Nishida, H.2    Kato, K.3
  • 39
    • 84954475129 scopus 로고    scopus 로고
    • Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis
    • Tangri N, Grams ME, Levey AS, Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 2016; 315: 164–174
    • (2016) JAMA , vol.315 , pp. 164-174
    • Tangri, N.1    Grams, M.E.2    Levey, A.S.3
  • 40
    • 84862319389 scopus 로고    scopus 로고
    • Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable
    • Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol 2012; 12: 82–82
    • (2012) BMC Med Res Methodol , vol.12 , pp. 82
    • Austin, P.C.1    Steyerberg, E.W.2
  • 41
    • 24944498883 scopus 로고    scopus 로고
    • Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
    • Reitsma JB, Glas AS, Rutjes AWS, Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 58: 982–990
    • (2005) J Clin Epidemiol , vol.58 , pp. 982-990
    • Reitsma, J.B.1    Glas, A.S.2    Rutjes, A.W.S.3
  • 42
    • 33750696367 scopus 로고    scopus 로고
    • Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach
    • author reply 2–3
    • Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006; 59: 1331–1332; author reply 2–3
    • (2006) J Clin Epidemiol , vol.59 , pp. 1331-1332
    • Chu, H.1    Cole, S.R.2
  • 43
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004; 23: 723–748
    • (2004) Stat Med , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.