-
1
-
-
54849197900
-
Crowd analysis: A survey
-
Beibei Zhan, Dorothy N Monekosso, Paolo Remagnino, Sergio A Velastin, and Li-Qun Xu. Crowd analysis: a survey. Machine Vision and Applications, 19(5-6):345-357, 2008.
-
(2008)
Machine Vision and Applications
, vol.19
, Issue.5-6
, pp. 345-357
-
-
Zhan, B.1
Monekosso, D.N.2
Remagnino, P.3
Velastin, S.A.4
Xu, L.-Q.5
-
2
-
-
84924362214
-
Crowded scene analysis: A survey
-
Teng Li, Huan Chang, Meng Wang, Bingbing Ni, Richang Hong, and Shuicheng Yan. Crowded scene analysis: A survey. IEEE transactions on circuits and systems for video technology, 25(3):367-386, 2015.
-
(2015)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.25
, Issue.3
, pp. 367-386
-
-
Li, T.1
Chang, H.2
Wang, M.3
Ni, B.4
Hong, R.5
Yan, S.6
-
3
-
-
84959214343
-
Cross-scene crowd counting via deep convolutional neural networks
-
Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene crowd counting via deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 833-841, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 833-841
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
4
-
-
85042131716
-
Switching convolutional neural network for crowd counting
-
Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu. Switching convolutional neural network for crowd counting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 1, page 6, 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, vol.1
, pp. 6
-
-
Sam, D.B.1
Surya, S.2
Venkatesh Babu, R.3
-
6
-
-
84971326529
-
Data-driven crowd understanding: A baseline for a large-scale crowd dataset
-
Cong Zhang, Kai Kang, Hongsheng Li, Xiaogang Wang, Rong Xie, and Xiaokang Yang. Data-driven crowd understanding: a baseline for a large-scale crowd dataset. IEEE Transactions on Multimedia, 18(6):1048-1061, 2016.
-
(2016)
IEEE Transactions on Multimedia
, vol.18
, Issue.6
, pp. 1048-1061
-
-
Zhang, C.1
Kang, K.2
Li, H.3
Wang, X.4
Xie, R.5
Yang, X.6
-
8
-
-
85032268688
-
Stc: A simple to complex framework for weaklysupervised semantic segmentation
-
YunchaoWei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao Zhao, and Shuicheng Yan. Stc: A simple to complex framework for weaklysupervised semantic segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(11):2314-2320, 2017.
-
(2017)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.39
, Issue.11
, pp. 2314-2320
-
-
Wei, Y.1
Liang, X.2
Chen, Y.3
Shen, X.4
Cheng, M.-M.5
Feng, J.6
Zhao, Y.7
Yan, S.8
-
9
-
-
85041895598
-
Object region mining with adversarial erasing: A simple classification to semantic segmentation approach
-
Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming Cheng, Yao Zhao, and Shuicheng Yan. Object region mining with adversarial erasing: A simple classification to semantic segmentation approach. In IEEE CVPR, 2017.
-
(2017)
IEEE CVPR
-
-
Wei, Y.1
Feng, J.2
Liang, X.3
Cheng, M.-M.4
Zhao, Y.5
Yan, S.6
-
10
-
-
85083952059
-
Multi-scale context aggregation by dilated convolutions
-
Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.
-
(2016)
ICLR
-
-
Yu, F.1
Koltun, V.2
-
11
-
-
85024089027
-
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
-
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99):1-1, 2017.
-
(2017)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.99
, pp. 1
-
-
Chen, L.C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
12
-
-
84986276756
-
Shallow and deep convolutional networks for saliency prediction
-
Junting Pan, Elisa Sayrol, Xavier Giro-i Nieto, Kevin McGuinness, and Noel E O'Connor. Shallow and deep convolutional networks for saliency prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 598-606, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 598-606
-
-
Pan, J.1
Sayrol, E.2
Xavier, G.-N.3
McGuinness, K.4
O'Connor, N.E.5
-
13
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings of the 22nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
14
-
-
84966533810
-
Going deeper with embedded FPGA platform for convolutional neural network
-
New York, NY, USA. ACM
-
Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going deeper with embedded FPGA platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '16, pages 26-35, New York, NY, USA, 2016. ACM.
-
(2016)
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '16
, pp. 26-35
-
-
Qiu, J.1
Wang, J.2
Yao, S.3
Guo, K.4
Li, B.5
Zhou, E.6
Yu, J.7
Tang, T.8
Xu, N.9
Song, S.10
Wang, Y.11
Yang, H.12
-
15
-
-
85034426984
-
High-performance video content recognition with long-term recurrent convolutional network for FPGA
-
IEEE
-
Xiaofan Zhang, Xinheng Liu, Anand Ramachandran, Chuanhao Zhuge, Shibin Tang, Peng Ouyang, Zuofu Cheng, Kyle Rupnow, and Deming Chen. High-performance video content recognition with long-term recurrent convolutional network for FPGA. In Field Programmable Logic and Applications (FPL), 2017 27th International Conference on, pages 1-4. IEEE, 2017.
-
(2017)
Field Programmable Logic and Applications (FPL), 2017 27th International Conference on
, pp. 1-4
-
-
Zhang, X.1
Liu, X.2
Ramachandran, A.3
Zhuge, C.4
Tang, S.5
Ouyang, P.6
Cheng, Z.7
Rupnow, K.8
Chen, D.9
-
16
-
-
85043515848
-
Machine learning on FPGAS to face the IoT revolution
-
IEEE
-
Xiaofan Zhang, Anand Ramachandran, Chuanhao Zhuge, Di He, Wei Zuo, Zuofu Cheng, Kyle Rupnow, and Deming Chen. Machine learning on FPGAs to face the IoT revolution. In Computer-Aided Design (ICCAD), 2017 IEEE/ACM International Conference on, pages 819-826. IEEE, 2017.
-
(2017)
Computer-Aided Design (ICCAD), 2017 IEEE/ACM International Conference on
, pp. 819-826
-
-
Zhang, X.1
Ramachandran, A.2
Zhuge, C.3
He, D.4
Zuo, W.5
Cheng, Z.6
Rupnow, K.7
Chen, D.8
-
17
-
-
84988956671
-
Yodann: An ultra-low power convolutional neural network accelerator based on binary weights
-
IEEE
-
Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. Yodann: An ultra-low power convolutional neural network accelerator based on binary weights. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on, pages 236-241. IEEE, 2016.
-
(2016)
VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on
, pp. 236-241
-
-
Andri, R.1
Cavigelli, L.2
Rossi, D.3
Benini, L.4
-
18
-
-
84986278309
-
Single-image crowd counting via multi-column convolutional neural network
-
Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd counting via multi-column convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 589-597, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 589-597
-
-
Zhang, Y.1
Zhou, D.2
Chen, S.3
Gao, S.4
Ma, Y.5
-
22
-
-
84887356947
-
Multi-source multi-scale counting in extremely dense crowd images
-
Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. Multi-source multi-scale counting in extremely dense crowd images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2547-2554, 2013.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2547-2554
-
-
Idrees, H.1
Saleemi, I.2
Seibert, C.3
Shah, M.4
-
24
-
-
85041892348
-
Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city cameras
-
Shanghang Zhang, Guanhang Wu, Joao P Costeira, and Jose MF Moura. Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3667-3676, 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3667-3676
-
-
Zhang, S.1
Wu, G.2
Costeira, J.P.3
Moura, J.M.F.4
-
25
-
-
84916619600
-
Crowd counting and profiling: Methodology and evaluation
-
Springer
-
Chen Change Loy, Ke Chen, Shaogang Gong, and Tao Xiang. Crowd counting and profiling: Methodology and evaluation. In Modeling, Simulation and Visual Analysis of Crowds, pages 347-382. Springer, 2013.
-
(2013)
Modeling, Simulation and Visual Analysis of Crowds
, pp. 347-382
-
-
Change Loy, C.1
Chen, K.2
Gong, S.3
Xiang, T.4
-
26
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: An evaluation of the state of the art. IEEE transactions on pattern analysis and machine intelligence, 34(4):743-761, 2012.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
29
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence, 32(9):1627-1645, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
33
-
-
84973926598
-
Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation
-
IEEE
-
Viet-Quoc Pham, Tatsuo Kozakaya, Osamu Yamaguchi, and Ryuzo Okada. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In Computer Vision (ICCV), 2015 IEEE International Conference on, pages 3253-3261. IEEE, 2015.
-
(2015)
Computer Vision (ICCV), 2015 IEEE International Conference on
, pp. 3253-3261
-
-
Pham, V.-Q.1
Kozakaya, T.2
Yamaguchi, O.3
Okada, R.4
-
37
-
-
85006810957
-
End-to-end crowd counting via joint learning local and global count
-
IEEE
-
Chong Shang, Haizhou Ai, and Bo Bai. End-to-end crowd counting via joint learning local and global count. In Image Processing (ICIP), 2016 IEEE International Conference on, pages 1215-1219. IEEE, 2016.
-
(2016)
Image Processing (ICIP), 2016 IEEE International Conference on
, pp. 1215-1219
-
-
Shang, C.1
Ai, H.2
Bai, B.3
-
40
-
-
85041907099
-
-
CoRR, abs/1706.05587
-
Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. CoRR, abs/1706.05587, 2017.
-
(2017)
Rethinking Atrous Convolution for Semantic Image Segmentation
-
-
Chen, L.-C.1
Papandreou, G.2
Schroff, F.3
Adam, H.4
-
41
-
-
77956001004
-
Deconvolutional networks
-
IEEE
-
Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2528-2535. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
43
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
44
-
-
85060891019
-
Extremely overlapping vehicle counting
-
Roberto Lpez-Sastre Saturnino Maldonado Bascn Ricardo Guerrero-Gmez-Olmedo Beatriz Torre-Jimnez Daniel Ooro-Rubio
-
Roberto Lpez-Sastre Saturnino Maldonado Bascn Ricardo Guerrero-Gmez-Olmedo, Beatriz Torre-Jimnez and Daniel Ooro-Rubio. Extremely overlapping vehicle counting. In Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 2015.
-
(2015)
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
-
-
-
45
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
46
-
-
84887355589
-
Cumulative attribute space for age and crowd density estimation
-
Ke Chen, Shaogang Gong, Tao Xiang, and Chen Change Loy. Cumulative attribute space for age and crowd density estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2467-2474, 2013.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2467-2474
-
-
Chen, K.1
Gong, S.2
Xiang, T.3
Loy, C.C.4
-
47
-
-
84874563522
-
Learning to count with regression forest and structured labels
-
Nov
-
L. Fiaschi, U. Koethe, R. Nair, and F. A. Hamprecht. Learning to count with regression forest and structured labels. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pages 2685-2688, Nov 2012.
-
(2012)
Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)
, pp. 2685-2688
-
-
Fiaschi, L.1
Koethe, U.2
Nair, R.3
Hamprecht, F.A.4
|