메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 3687-3696

FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras

Author keywords

[No Author keywords available]

Indexed keywords

CAMERAS; COMPUTER VISION; CONVOLUTION; DEEP NEURAL NETWORKS; MOBILE TELECOMMUNICATION SYSTEMS; NEURAL NETWORKS; PIXELS; VEHICLES;

EID: 85041892348     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.396     Document Type: Conference Paper
Times cited : (222)

References (52)
  • 7
    • 84898455547 scopus 로고    scopus 로고
    • Feature mining for localised crowd counting
    • K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting. In BMVC, volume 1, page 3, 2012.
    • (2012) BMVC , vol.1 , pp. 3
    • Chen, K.1    Loy, C.C.2    Gong, S.3    Xiang, T.4
  • 9
  • 20
    • 84867474589 scopus 로고    scopus 로고
    • Real-time traffic congestion detection based on video analysis
    • S. Hua, J. Wua, and L. Xub. Real-time traffic congestion detection based on video analysis. J. Inf. Comput. Sci, 9 (10):2907-2914, 2012.
    • (2012) J. Inf. Comput. Sci , vol.9 , Issue.10 , pp. 2907-2914
    • Hua, S.1    Wua, J.2    Xub, L.3
  • 23
    • 84889839947 scopus 로고    scopus 로고
    • Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory
    • B. S. Kerner. Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer Science & Business Media, 2009.
    • (2009) Springer Science & Business Media
    • Kerner, B.S.1
  • 26
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International journal of computer vision, 60 (2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 29
    • 85019237789 scopus 로고    scopus 로고
    • Phased lstm: Accelerating recurrent network training for long or event-based sequences
    • D. Neil, M. Pfeiffer, and S.-C. Liu. Phased lstm: Accelerating recurrent network training for long or event-based sequences. In Advances in Neural Information Processing Systems, pages 3882-3890, 2016.
    • (2016) Advances in Neural Information Processing Systems , pp. 3882-3890
    • Neil, D.1    Pfeiffer, M.2    Liu, S.-C.3
  • 31
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. ICML (3), 28:1310-1318, 2013.
    • (2013) ICML , vol.28 , Issue.3 , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 35
    • 85046411945 scopus 로고    scopus 로고
    • A survey of recent advances in cnn-based single image crowd counting and density estimation
    • V. A. Sindagi and V. M. Patel. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 2017.
    • (2017) Pattern Recognition Letters
    • Sindagi, V.A.1    Patel, V.M.2
  • 51
    • 84990057579 scopus 로고    scopus 로고
    • Crossing-line crowd counting with two-phase deep neural networks
    • Springer
    • Z. Zhao, H. Li, R. Zhao, and X. Wang. Crossing-line crowd counting with two-phase deep neural networks. In European Conference on Computer Vision, pages 712-726. Springer, 2016.
    • (2016) European Conference on Computer Vision , pp. 712-726
    • Zhao, Z.1    Li, H.2    Zhao, R.3    Wang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.