메뉴 건너뛰기




Volumn , Issue , 2017, Pages

CNN-Based cascaded multi-task learning of high-level prior and density estimation for crowd counting

Author keywords

[No Author keywords available]

Indexed keywords

SECURITY SYSTEMS;

EID: 85039904409     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AVSS.2017.8078491     Document Type: Conference Paper
Times cited : (616)

References (32)
  • 3
    • 84908393354 scopus 로고    scopus 로고
    • Privacy preserving crowd monitoring: Counting people without people models or tracking
    • IEEE
    • A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In IEEE CVPR, pages 1-7. IEEE, 2008.
    • (2008) IEEE CVPR , pp. 1-7
    • Chan, A.B.1    Liang, Z.-S.J.2    Vasconcelos, N.3
  • 4
    • 84859031876 scopus 로고    scopus 로고
    • Counting people with low-level features and Bayesian regression
    • A. B. Chan and N. Vasconcelos. Counting people with low-level features and bayesian regression. IEEE Transactions on Image Processing, 21(4):2160-2177, 2012.
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.4 , pp. 2160-2177
    • Chan, A.B.1    Vasconcelos, N.2
  • 6
    • 85039915247 scopus 로고    scopus 로고
    • Feature mining for localised crowd counting
    • K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting. In ECCV, 2012.
    • (2012) ECCV
    • Chen, K.1    Loy, C.C.2    Gong, S.3    Xiang, T.4
  • 8
    • 84986282070 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In IEEE CVPR, pages 3150-3158, 2016.
    • (2016) IEEE CVPR , pp. 3150-3158
    • Dai, J.1    He, K.2    Sun, J.3
  • 9
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Springer
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. Springer, 2014.
    • (2014) ECCV , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84887356947 scopus 로고    scopus 로고
    • Multi-source multi-scale counting in extremely dense crowd images
    • H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale counting in extremely dense crowd images. In IEEE CVPR, pages 2547-2554, 2013.
    • (2013) IEEE CVPR , pp. 2547-2554
    • Idrees, H.1    Saleemi, I.2    Seibert, C.3    Shah, M.4
  • 12
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, pages 1324-1332, 2010.
    • (2010) NIPS , pp. 1324-1332
    • Lempitsky, V.1    Zisserman, A.2
  • 17
    • 84990064144 scopus 로고    scopus 로고
    • Towards perspective-free object counting with deep learning
    • Springer
    • D. Onoro-Rubio and R. J. López-Sastre. Towards perspective-free object counting with deep learning. In ECCV, pages 615-629. Springer, 2016.
    • (2016) ECCV , pp. 615-629
    • Onoro-Rubio, D.1    López-Sastre, R.J.2
  • 18
    • 84973926598 scopus 로고    scopus 로고
    • Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation
    • V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In Proceedings of the IEEE ICCV, pages 3253-3261, 2015.
    • (2015) Proceedings of the IEEE ICCV , pp. 3253-3261
    • Pham, V.-Q.1    Kozakaya, T.2    Yamaguchi, O.3    Okada, R.4
  • 20
    • 85039919401 scopus 로고    scopus 로고
    • Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
    • R. Ranjan, V. Patel, and R. Chellappa. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE transactions on PAMI, 2016.
    • (2016) IEEE Transactions on PAMI
    • Ranjan, R.1    Patel, V.2    Chellappa, R.3
  • 21
    • 84856635813 scopus 로고    scopus 로고
    • Density-aware person detection and tracking in crowds
    • IEEE
    • M. Rodriguez, I. Laptev, J. Sivic, and J.-Y. Audibert. Density-aware person detection and tracking in crowds. In IEEE ICCV, pages 2423-2430. IEEE, 2011.
    • (2011) IEEE ICCV , pp. 2423-2430
    • Rodriguez, M.1    Laptev, I.2    Sivic, J.3    Audibert, J.-Y.4
  • 23
    • 85006810957 scopus 로고    scopus 로고
    • End-to-end crowd counting via joint learning local and global count
    • IEEE
    • C. Shang, H. Ai, and B. Bai. End-to-end crowd counting via joint learning local and global count. In IEEE ICIP, pages 1215-1219. IEEE, 2016.
    • (2016) IEEE ICIP , pp. 1215-1219
    • Shang, C.1    Ai, H.2    Bai, B.3
  • 24
    • 85006752816 scopus 로고    scopus 로고
    • Scene-independent group profiling in crowd
    • J. Shao, C. Change Loy, and X. Wang. Scene-independent group profiling in crowd. In IEEE CVPR, pages 2219-2226, 2014.
    • (2014) IEEE CVPR , pp. 2219-2226
    • Shao, J.1    Change Loy, C.2    Wang, X.3
  • 25
    • 84959200559 scopus 로고    scopus 로고
    • Deeply learned attributes for crowded scene understanding
    • IEEE
    • J. Shao, K. Kang, C. C. Loy, and X. Wang. Deeply learned attributes for crowded scene understanding. In Proceedings of the IEEE CVPR, pages 4657-4666. IEEE, 2015.
    • (2015) Proceedings of the IEEE CVPR , pp. 4657-4666
    • Shao, J.1    Kang, K.2    Loy, C.C.3    Wang, X.4
  • 27
    • 84990864917 scopus 로고    scopus 로고
    • Learning to count with cnn boosting
    • Springer
    • E. Walach and L. Wolf. Learning to count with cnn boosting. In ECCV, pages 660-676. Springer, 2016.
    • (2016) ECCV , pp. 660-676
    • Walach, E.1    Wolf, L.2
  • 29
    • 85006797227 scopus 로고    scopus 로고
    • Fast visual object counting via example-based density estimation
    • IEEE
    • Y. Wang and Y. Zou. Fast visual object counting via example-based density estimation. In IEEE ICIP, pages 3653-3657. IEEE, 2016.
    • (2016) IEEE ICIP , pp. 3653-3657
    • Wang, Y.1    Zou, Y.2
  • 30
    • 84977634849 scopus 로고    scopus 로고
    • Crowd density estimation based on rich features and random projection forest
    • IEEE
    • B. Xu and G. Qiu. Crowd density estimation based on rich features and random projection forest. In 2016 IEEE WACV, pages 1-8. IEEE, 2016.
    • (2016) 2016 IEEE WACV , pp. 1-8
    • Xu, B.1    Qiu, G.2
  • 31
    • 84959214343 scopus 로고    scopus 로고
    • Cross-scene crowd counting via deep convolutional neural networks
    • C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In Proceedings of the IEEE CVPR, pages 833-841, 2015.
    • (2015) Proceedings of the IEEE CVPR , pp. 833-841
    • Zhang, C.1    Li, H.2    Wang, X.3    Yang, X.4
  • 32
    • 84986278309 scopus 로고    scopus 로고
    • Single-image crowd counting via multi-column convolutional neural network
    • Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-image crowd counting via multi-column convolutional neural network. In Proceedings of the IEEE CVPR, pages 589-597, 2016.
    • (2016) Proceedings of the IEEE CVPR , pp. 589-597
    • Zhang, Y.1    Zhou, D.2    Chen, S.3    Gao, S.4    Ma, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.