-
1
-
-
0034623787
-
Screen savers of the world unite!
-
M. Shirts and V. S. Pande, Screen savers of the world unite! Science 290, 1903 (2000). SCIEAS 0036-8075 10.1126/science.290.5498.1903
-
(2000)
Science
, vol.290
, pp. 1903
-
-
Shirts, M.1
Pande, V.S.2
-
2
-
-
46249090563
-
Anton, a special-purpose machine for molecular dynamics simulation
-
D. E. Shaw, Anton, a special-purpose machine for molecular dynamics simulation, Commun. ACM 51, 91 (2008). CACMA2 0001-0782 10.1145/1364782.1364802
-
(2008)
Commun. ACM
, vol.51
, pp. 91
-
-
Shaw, D.E.1
-
3
-
-
84923101774
-
Markov state models provide insights into dynamic modulation of protein function
-
D. Shukla, C. X. Hernández, J. K. Weber, and V. S. Pande, Markov state models provide insights into dynamic modulation of protein function, Acc. Chem. Res. 48, 414 (2015). ACHRE4 0001-4842 10.1021/ar5002999
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 414
-
-
Shukla, D.1
Hernández, C.X.2
Weber, J.K.3
Pande, V.S.4
-
4
-
-
79957488000
-
Markov models of molecular kinetics: Generation and validation
-
J.-H. Prinz, Markov models of molecular kinetics: Generation and validation, J. Chem. Phys. 134, 174105 (2011). JCPSA6 0021-9606 10.1063/1.3565032
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 174105
-
-
Prinz, J.-H.1
-
5
-
-
85042378434
-
Markov state models: From an art to a science
-
B. E. Husic and V. S. Pande, Markov state models: From an art to a science, J. Am. Chem. Soc. (2018).
-
(2018)
J. Am. Chem. Soc.
-
-
Husic, B.E.1
Pande, V.S.2
-
6
-
-
84879735744
-
A variational approach to modeling slow processes in stochastic dynamical systems
-
F. Noé and F. Nüske, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Model. Simul. 11, 635 (2013). 1540-3459 10.1137/110858616
-
(2013)
Multiscale Model. Simul.
, vol.11
, pp. 635
-
-
Noé, F.1
Nüske, F.2
-
7
-
-
79951794486
-
Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions
-
Y. Naritomi and S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions, J. Chem. Phys. 134, 065101 (2011). JCPSA6 0021-9606 10.1063/1.3554380
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 065101
-
-
Naritomi, Y.1
Fuchigami, S.2
-
8
-
-
84886081379
-
Identification of slow molecular order parameters for Markov model construction
-
F. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé, Identification of slow molecular order parameters for Markov model construction, J. Chem. Phys. 139, 015102 (2013). JCPSA6 0021-9606 10.1063/1.4811489
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 015102
-
-
Pérez-Hernández, F.1
Paul, F.2
Giorgino, T.3
De Fabritiis, G.4
Noé, F.5
-
9
-
-
84876005630
-
Improvements in Markov state model construction reveal many nonnative interactions in the folding of NTL9
-
C. R. Schwantes and V. S. Pande, Improvements in Markov state model construction reveal many nonnative interactions in the folding of NTL9, J. Chem. Theory Comput. 9, 2000 (2013). 1549-9618 10.1021/ct300878a
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 2000
-
-
Schwantes, C.R.1
Pande, V.S.2
-
10
-
-
84922674715
-
Modeling molecular kinetics with tICA and the kernel trick
-
C. R. Schwantes and V. S. Pande, Modeling molecular kinetics with tICA and the kernel trick, J. Chem. Theory Comput. 11, 600 (2015). 1549-9618 10.1021/ct5007357
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 600
-
-
Schwantes, C.R.1
Pande, V.S.2
-
11
-
-
84961290952
-
Variational cross-validation of slow dynamical modes in molecular kinetics
-
R. T. McGibbon and V. S. Pande, Variational cross-validation of slow dynamical modes in molecular kinetics, J. Chem. Phys. 142, 124105 (2015). JCPSA6 0021-9606 10.1063/1.4916292
-
(2015)
J. Chem. Phys.
, vol.142
, pp. 124105
-
-
McGibbon, R.T.1
Pande, V.S.2
-
12
-
-
85018507542
-
Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations
-
H. Wu, Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations, J. Chem. Phys. 146, 154104 (2017). JCPSA6 0021-9606 10.1063/1.4979344
-
(2017)
J. Chem. Phys.
, vol.146
, pp. 154104
-
-
Wu, H.1
-
13
-
-
85048886573
-
-
Towards robust dynamical models of biomolecules. Ph.D. Thesis, Stanford University
-
M. P. Harrigan and V. S. Pande, Towards robust dynamical models of biomolecules. Ph.D. Thesis, Stanford University (2017).
-
(2017)
-
-
Harrigan, M.P.1
Pande, V.S.2
-
15
-
-
85020750337
-
Landmark kernel tICA for conformational dynamics
-
M. P. Harrigan and V. S. Pande, Landmark kernel tICA for conformational dynamics, bioRxiv 123752 (2017).
-
(2017)
BioRxiv
, pp. 123752
-
-
Harrigan, M.P.1
Pande, V.S.2
-
17
-
-
84919908080
-
-
edited by E. P. Xing and T. Jebara, 32 (PMLR, Bejing, China)
-
D. J. Rezende, S. Mohamed, and D. Wierstra, in Proceedings of the 31st International Conference on Machine Learning, edited by E. P. Xing and T. Jebara, Vol. 32 (PMLR, Bejing, China, 2014), pp. 1278-1286.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
18
-
-
0000783715
-
Replicator neural networks for universal optimal source coding
-
R. Hecht-Nielsen, Replicator neural networks for universal optimal source coding, Science 269, 1860 (1995). 10.1126/science.269.5232.1860
-
(1995)
Science
, vol.269
, pp. 1860
-
-
Hecht-Nielsen, R.1
-
19
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313, 504 (2006). 10.1126/science.1127647
-
(2006)
Science
, vol.313
, pp. 504
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
20
-
-
84899017362
-
-
Generalized denoising auto-encoders as generative models. In (Curran Associates Inc., Lake Tahoe), p. 899
-
Y. Bengio, L. Yao, G. Alain, and P. Vincent, Generalized denoising auto-encoders as generative models. In Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1 (Curran Associates Inc., Lake Tahoe, 2013), p. 899.
-
(2013)
Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
21
-
-
0000325341
-
LIII. on lines and planes of closest fit to systems of points in space
-
K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, London, Edinburgh, Dublin Philos. Mag. J. Sci. 2, 559 (2010). 1941-5982 10.1080/14786440109462720
-
(2010)
London, Edinburgh, Dublin Philos. Mag. J. Sci.
, vol.2
, pp. 559
-
-
Pearson, K.1
-
22
-
-
85010735019
-
Identification of simple reaction coordinates from complex dynamics
-
R. T. McGibbon, B. E. Husic, and V. S. Pande, Identification of simple reaction coordinates from complex dynamics, J. Chem. Phys. 146, 044109 (2017). JCPSA6 0021-9606 10.1063/1.4974306
-
(2017)
J. Chem. Phys.
, vol.146
, pp. 044109
-
-
McGibbon, R.T.1
Husic, B.E.2
Pande, V.S.3
-
23
-
-
85039927762
-
Vampnets for deep learning of molecular kinetics
-
A. Mardt, L. Pasquali, H. Wu, and F. Noé, Vampnets for deep learning of molecular kinetics, Nat. Commun. 9, 5 (2018). 2041-1723 10.1038/s41467-017-02388-1
-
(2018)
Nat. Commun.
, vol.9
, pp. 5
-
-
Mardt, A.1
Pasquali, L.2
Wu, H.3
Noé, F.4
-
24
-
-
85044071429
-
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
-
C. Wehmeyer and F. Noé, Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics, J. Chem. Phys. 148, 241703 (2018). JCPSA6 0021-9606 10.1063/1.5011399
-
(2018)
J. Chem. Phys.
, vol.148
, pp. 241703
-
-
Wehmeyer, C.1
Noé, F.2
-
25
-
-
84990029950
-
-
edited by B. Leibe, J. Matas, N. Sebe, and M. Welling (Springer, Cham), pp. 835-851
-
J. Walker, C. Doersch, A. Gupta, and M. Hebert, Computer Vision-ECCV 2016, edited by B. Leibe, J. Matas, N. Sebe, and M. Welling (Springer, Cham, 2016), pp. 835-851.
-
(2016)
Computer Vision - ECCV 2016
-
-
Walker, J.1
Doersch, C.2
Gupta, A.3
Hebert, M.4
-
27
-
-
85050209303
-
-
edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc.), pp. 3601-3610
-
M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017), pp. 3601-3610.
-
(2017)
Advances in Neural Information Processing Systems 30
-
-
Fraccaro, M.1
Kamronn, S.2
Paquet, U.3
Winther, O.4
-
28
-
-
85024502828
-
A deep learning framework for financial time series using stacked autoencoders and long-short term memory
-
W. Bao, J. Yue, and Y. Rao, A deep learning framework for financial time series using stacked autoencoders and long-short term memory, PloS One 12, e0180944 (2017). 1932-6203 10.1371/journal.pone.0180944
-
(2017)
PloS One
, vol.12
, pp. e0180944
-
-
Bao, W.1
Yue, J.2
Rao, Y.3
-
29
-
-
85029691487
-
Deep reconstruction model for dynamic pet images
-
J. Cui, X. Liu, Y. Wang, and H. Liu, Deep reconstruction model for dynamic pet images, PloS One 12, e0184667 (2017). 1932-6203 10.1371/journal.pone.0184667
-
(2017)
PloS One
, vol.12
, pp. e0184667
-
-
Cui, J.1
Liu, X.2
Wang, Y.3
Liu, H.4
-
34
-
-
85032990764
-
Note: MSM lag time cannot be used for variational model selection
-
B. E. Husic and V. S. Pande, Note: MSM lag time cannot be used for variational model selection, J. Chem. Phys. 147, 176101 (2017). JCPSA6 0021-9606 10.1063/1.5002086
-
(2017)
J. Chem. Phys.
, vol.147
, pp. 176101
-
-
Husic, B.E.1
Pande, V.S.2
-
36
-
-
79953167530
-
Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments
-
F. Noé, Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments, Proc. Natl. Acad. Sci. USA 108, 4822 (2011). PNASA6 0027-8424 10.1073/pnas.1004646108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4822
-
-
Noé, F.1
-
37
-
-
85008895438
-
MSMBuilder: Statistical models for biomolecular dynamics
-
M. P. Harrigan, MSMBuilder: Statistical models for biomolecular dynamics, Biophys. J. 112, 10 (2017). BIOJAU 0006-3495 10.1016/j.bpj.2016.10.042
-
(2017)
Biophys. J.
, vol.112
, pp. 10
-
-
Harrigan, M.P.1
-
38
-
-
0003067207
-
Location of saddle points and minimum energy paths by a constrained simplex optimization procedure
-
K. Müller and L. D. Brown, Location of saddle points and minimum energy paths by a constrained simplex optimization procedure, Theor. Chim. Acta 53, 75 (1979). TCHAAM 0040-5744 10.1007/BF00547608
-
(1979)
Theor. Chim. Acta
, vol.53
, pp. 75
-
-
Müller, K.1
Brown, L.D.2
-
39
-
-
85045081113
-
Searching for activation functions
-
ABS/1710.05941
-
P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, CoRR abs/1710.05941 (2017).
-
(2017)
CoRR
-
-
Ramachandran, P.1
Zoph, B.2
Le, Q.V.3
-
42
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12, 2825 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825
-
-
Pedregosa, F.1
-
43
-
-
70349527948
-
Estimating the sampling error: Distribution of transition matrices and functions of transition matrices for given trajectory data.
-
P. Metzner, F. Noé, and C. Schütte, Estimating the sampling error: Distribution of transition matrices and functions of transition matrices for given trajectory data., Phys. Rev. E 80, 021106 (2009). PLEEE8 1539-3755 10.1103/PhysRevE.80.021106
-
(2009)
Phys. Rev. e
, vol.80
, pp. 021106
-
-
Metzner, P.1
Noé, F.2
Schütte, C.3
-
44
-
-
85048862795
-
MDEntropy: Information-theoretic analyses for molecular dynamics
-
C. X. Hernández and V. S. Pande, MDEntropy: Information-theoretic analyses for molecular dynamics, J. Open Source Softw. 2, 427 (2017). 2475-9066 10.21105/joss.00427
-
(2017)
J. Open Source Softw.
, vol.2
, pp. 427
-
-
Hernández, C.X.1
Pande, V.S.2
-
45
-
-
85020710635
-
MSMExplorer: Data visualizations for biomolecular dynamics
-
C. X. Hernández, M. P. Harrigan, M. M. Sultan, and V. S. Pande, MSMExplorer: Data visualizations for biomolecular dynamics, J. Open Source Softw. 2 (2017).
-
(2017)
J. Open Source Softw.
, vol.2
-
-
Hernández, C.X.1
Harrigan, M.P.2
Sultan, M.M.3
Pande, V.S.4
-
46
-
-
80055081145
-
-
K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, How fast-folding proteins fold. 334, 517 (2011).
-
(2011)
How Fast-folding Proteins Fold.
, vol.334
, pp. 517
-
-
Lindorff-Larsen, K.1
Piana, S.2
Dror, R.O.3
Shaw, D.E.4
-
47
-
-
84944750932
-
MDTraj: A modern open library for the analysis of molecular dynamics trajectories
-
R. T. McGibbon, MDTraj: A modern open library for the analysis of molecular dynamics trajectories, Biophys. J. 109, 1528 (2015). BIOJAU 0006-3495 10.1016/j.bpj.2015.08.015
-
(2015)
Biophys. J.
, vol.109
, pp. 1528
-
-
McGibbon, R.T.1
-
48
-
-
84996548618
-
Optimized parameter selection reveals trends in Markov state models for protein folding
-
B. E. Husic, R. T. McGibbon, M. M. Sultan, and V. S. Pande, Optimized parameter selection reveals trends in Markov state models for protein folding, J. Chem. Phys. 145, 194103 (2016). JCPSA6 0021-9606 10.1063/1.4967809
-
(2016)
J. Chem. Phys.
, vol.145
, pp. 194103
-
-
Husic, B.E.1
McGibbon, R.T.2
Sultan, M.M.3
Pande, V.S.4
-
49
-
-
84944046499
-
Kinetic distance and kinetic maps from molecular dynamics simulation
-
F. Noé and C. Clementi, Kinetic distance and kinetic maps from molecular dynamics simulation, J. Chem. Theory Comput. 11, 5002 (2015). 1549-9618 10.1021/acs.jctc.5b00553
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 5002
-
-
Noé, F.1
Clementi, C.2
-
50
-
-
85029535706
-
Osprey: Hyperparameter optimization for machine learning
-
R. T. McGibbon, Osprey: Hyperparameter optimization for machine learning, J. Open Source Softw. 1, 34 (2016). 2475-9066 10.21105/joss.00034
-
(2016)
J. Open Source Softw.
, vol.1
, pp. 34
-
-
McGibbon, R.T.1
-
51
-
-
85048898512
-
-
See Supplemental Material at for the following information: Fig. S1 contains a bootstrapped mutual information analysis showing that the VDE captures more information from the original features than previous linear methods; Fig. S2 shows that the VDE is able to produce similar models using internal protein coordinates, unlike previous linear methods
-
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.97.062412 for the following information: Fig. S1 contains a bootstrapped mutual information analysis showing that the VDE captures more information from the original features than previous linear methods; Fig. S2 shows that the VDE is able to produce similar models using internal protein coordinates, unlike previous linear methods.
-
-
-
|