메뉴 건너뛰기




Volumn 97, Issue 6, 2018, Pages

Variational encoding of complex dynamics

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ANALYSIS; DEEP LEARNING; SIGNAL ENCODING; TIME SERIES ANALYSIS;

EID: 85048887085     PISSN: 24700045     EISSN: 24700053     Source Type: Journal    
DOI: 10.1103/PhysRevE.97.062412     Document Type: Article
Times cited : (176)

References (51)
  • 1
    • 0034623787 scopus 로고    scopus 로고
    • Screen savers of the world unite!
    • M. Shirts and V. S. Pande, Screen savers of the world unite! Science 290, 1903 (2000). SCIEAS 0036-8075 10.1126/science.290.5498.1903
    • (2000) Science , vol.290 , pp. 1903
    • Shirts, M.1    Pande, V.S.2
  • 2
    • 46249090563 scopus 로고    scopus 로고
    • Anton, a special-purpose machine for molecular dynamics simulation
    • D. E. Shaw, Anton, a special-purpose machine for molecular dynamics simulation, Commun. ACM 51, 91 (2008). CACMA2 0001-0782 10.1145/1364782.1364802
    • (2008) Commun. ACM , vol.51 , pp. 91
    • Shaw, D.E.1
  • 3
    • 84923101774 scopus 로고    scopus 로고
    • Markov state models provide insights into dynamic modulation of protein function
    • D. Shukla, C. X. Hernández, J. K. Weber, and V. S. Pande, Markov state models provide insights into dynamic modulation of protein function, Acc. Chem. Res. 48, 414 (2015). ACHRE4 0001-4842 10.1021/ar5002999
    • (2015) Acc. Chem. Res. , vol.48 , pp. 414
    • Shukla, D.1    Hernández, C.X.2    Weber, J.K.3    Pande, V.S.4
  • 4
    • 79957488000 scopus 로고    scopus 로고
    • Markov models of molecular kinetics: Generation and validation
    • J.-H. Prinz, Markov models of molecular kinetics: Generation and validation, J. Chem. Phys. 134, 174105 (2011). JCPSA6 0021-9606 10.1063/1.3565032
    • (2011) J. Chem. Phys. , vol.134 , pp. 174105
    • Prinz, J.-H.1
  • 5
    • 85042378434 scopus 로고    scopus 로고
    • Markov state models: From an art to a science
    • B. E. Husic and V. S. Pande, Markov state models: From an art to a science, J. Am. Chem. Soc. (2018).
    • (2018) J. Am. Chem. Soc.
    • Husic, B.E.1    Pande, V.S.2
  • 6
    • 84879735744 scopus 로고    scopus 로고
    • A variational approach to modeling slow processes in stochastic dynamical systems
    • F. Noé and F. Nüske, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Model. Simul. 11, 635 (2013). 1540-3459 10.1137/110858616
    • (2013) Multiscale Model. Simul. , vol.11 , pp. 635
    • Noé, F.1    Nüske, F.2
  • 7
    • 79951794486 scopus 로고    scopus 로고
    • Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions
    • Y. Naritomi and S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions, J. Chem. Phys. 134, 065101 (2011). JCPSA6 0021-9606 10.1063/1.3554380
    • (2011) J. Chem. Phys. , vol.134 , pp. 065101
    • Naritomi, Y.1    Fuchigami, S.2
  • 8
    • 84886081379 scopus 로고    scopus 로고
    • Identification of slow molecular order parameters for Markov model construction
    • F. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé, Identification of slow molecular order parameters for Markov model construction, J. Chem. Phys. 139, 015102 (2013). JCPSA6 0021-9606 10.1063/1.4811489
    • (2013) J. Chem. Phys. , vol.139 , pp. 015102
    • Pérez-Hernández, F.1    Paul, F.2    Giorgino, T.3    De Fabritiis, G.4    Noé, F.5
  • 9
    • 84876005630 scopus 로고    scopus 로고
    • Improvements in Markov state model construction reveal many nonnative interactions in the folding of NTL9
    • C. R. Schwantes and V. S. Pande, Improvements in Markov state model construction reveal many nonnative interactions in the folding of NTL9, J. Chem. Theory Comput. 9, 2000 (2013). 1549-9618 10.1021/ct300878a
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 2000
    • Schwantes, C.R.1    Pande, V.S.2
  • 10
    • 84922674715 scopus 로고    scopus 로고
    • Modeling molecular kinetics with tICA and the kernel trick
    • C. R. Schwantes and V. S. Pande, Modeling molecular kinetics with tICA and the kernel trick, J. Chem. Theory Comput. 11, 600 (2015). 1549-9618 10.1021/ct5007357
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 600
    • Schwantes, C.R.1    Pande, V.S.2
  • 11
    • 84961290952 scopus 로고    scopus 로고
    • Variational cross-validation of slow dynamical modes in molecular kinetics
    • R. T. McGibbon and V. S. Pande, Variational cross-validation of slow dynamical modes in molecular kinetics, J. Chem. Phys. 142, 124105 (2015). JCPSA6 0021-9606 10.1063/1.4916292
    • (2015) J. Chem. Phys. , vol.142 , pp. 124105
    • McGibbon, R.T.1    Pande, V.S.2
  • 12
    • 85018507542 scopus 로고    scopus 로고
    • Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations
    • H. Wu, Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations, J. Chem. Phys. 146, 154104 (2017). JCPSA6 0021-9606 10.1063/1.4979344
    • (2017) J. Chem. Phys. , vol.146 , pp. 154104
    • Wu, H.1
  • 13
    • 85048886573 scopus 로고    scopus 로고
    • Towards robust dynamical models of biomolecules. Ph.D. Thesis, Stanford University
    • M. P. Harrigan and V. S. Pande, Towards robust dynamical models of biomolecules. Ph.D. Thesis, Stanford University (2017).
    • (2017)
    • Harrigan, M.P.1    Pande, V.S.2
  • 15
    • 85020750337 scopus 로고    scopus 로고
    • Landmark kernel tICA for conformational dynamics
    • M. P. Harrigan and V. S. Pande, Landmark kernel tICA for conformational dynamics, bioRxiv 123752 (2017).
    • (2017) BioRxiv , pp. 123752
    • Harrigan, M.P.1    Pande, V.S.2
  • 18
    • 0000783715 scopus 로고
    • Replicator neural networks for universal optimal source coding
    • R. Hecht-Nielsen, Replicator neural networks for universal optimal source coding, Science 269, 1860 (1995). 10.1126/science.269.5232.1860
    • (1995) Science , vol.269 , pp. 1860
    • Hecht-Nielsen, R.1
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313, 504 (2006). 10.1126/science.1127647
    • (2006) Science , vol.313 , pp. 504
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 21
    • 0000325341 scopus 로고    scopus 로고
    • LIII. on lines and planes of closest fit to systems of points in space
    • K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, London, Edinburgh, Dublin Philos. Mag. J. Sci. 2, 559 (2010). 1941-5982 10.1080/14786440109462720
    • (2010) London, Edinburgh, Dublin Philos. Mag. J. Sci. , vol.2 , pp. 559
    • Pearson, K.1
  • 22
    • 85010735019 scopus 로고    scopus 로고
    • Identification of simple reaction coordinates from complex dynamics
    • R. T. McGibbon, B. E. Husic, and V. S. Pande, Identification of simple reaction coordinates from complex dynamics, J. Chem. Phys. 146, 044109 (2017). JCPSA6 0021-9606 10.1063/1.4974306
    • (2017) J. Chem. Phys. , vol.146 , pp. 044109
    • McGibbon, R.T.1    Husic, B.E.2    Pande, V.S.3
  • 23
    • 85039927762 scopus 로고    scopus 로고
    • Vampnets for deep learning of molecular kinetics
    • A. Mardt, L. Pasquali, H. Wu, and F. Noé, Vampnets for deep learning of molecular kinetics, Nat. Commun. 9, 5 (2018). 2041-1723 10.1038/s41467-017-02388-1
    • (2018) Nat. Commun. , vol.9 , pp. 5
    • Mardt, A.1    Pasquali, L.2    Wu, H.3    Noé, F.4
  • 24
    • 85044071429 scopus 로고    scopus 로고
    • Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
    • C. Wehmeyer and F. Noé, Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics, J. Chem. Phys. 148, 241703 (2018). JCPSA6 0021-9606 10.1063/1.5011399
    • (2018) J. Chem. Phys. , vol.148 , pp. 241703
    • Wehmeyer, C.1    Noé, F.2
  • 25
    • 84990029950 scopus 로고    scopus 로고
    • edited by B. Leibe, J. Matas, N. Sebe, and M. Welling (Springer, Cham), pp. 835-851
    • J. Walker, C. Doersch, A. Gupta, and M. Hebert, Computer Vision-ECCV 2016, edited by B. Leibe, J. Matas, N. Sebe, and M. Welling (Springer, Cham, 2016), pp. 835-851.
    • (2016) Computer Vision - ECCV 2016
    • Walker, J.1    Doersch, C.2    Gupta, A.3    Hebert, M.4
  • 27
    • 85050209303 scopus 로고    scopus 로고
    • edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc.), pp. 3601-3610
    • M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017), pp. 3601-3610.
    • (2017) Advances in Neural Information Processing Systems 30
    • Fraccaro, M.1    Kamronn, S.2    Paquet, U.3    Winther, O.4
  • 28
    • 85024502828 scopus 로고    scopus 로고
    • A deep learning framework for financial time series using stacked autoencoders and long-short term memory
    • W. Bao, J. Yue, and Y. Rao, A deep learning framework for financial time series using stacked autoencoders and long-short term memory, PloS One 12, e0180944 (2017). 1932-6203 10.1371/journal.pone.0180944
    • (2017) PloS One , vol.12 , pp. e0180944
    • Bao, W.1    Yue, J.2    Rao, Y.3
  • 29
    • 85029691487 scopus 로고    scopus 로고
    • Deep reconstruction model for dynamic pet images
    • J. Cui, X. Liu, Y. Wang, and H. Liu, Deep reconstruction model for dynamic pet images, PloS One 12, e0184667 (2017). 1932-6203 10.1371/journal.pone.0184667
    • (2017) PloS One , vol.12 , pp. e0184667
    • Cui, J.1    Liu, X.2    Wang, Y.3    Liu, H.4
  • 34
    • 85032990764 scopus 로고    scopus 로고
    • Note: MSM lag time cannot be used for variational model selection
    • B. E. Husic and V. S. Pande, Note: MSM lag time cannot be used for variational model selection, J. Chem. Phys. 147, 176101 (2017). JCPSA6 0021-9606 10.1063/1.5002086
    • (2017) J. Chem. Phys. , vol.147 , pp. 176101
    • Husic, B.E.1    Pande, V.S.2
  • 36
    • 79953167530 scopus 로고    scopus 로고
    • Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments
    • F. Noé, Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments, Proc. Natl. Acad. Sci. USA 108, 4822 (2011). PNASA6 0027-8424 10.1073/pnas.1004646108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 4822
    • Noé, F.1
  • 37
    • 85008895438 scopus 로고    scopus 로고
    • MSMBuilder: Statistical models for biomolecular dynamics
    • M. P. Harrigan, MSMBuilder: Statistical models for biomolecular dynamics, Biophys. J. 112, 10 (2017). BIOJAU 0006-3495 10.1016/j.bpj.2016.10.042
    • (2017) Biophys. J. , vol.112 , pp. 10
    • Harrigan, M.P.1
  • 38
    • 0003067207 scopus 로고
    • Location of saddle points and minimum energy paths by a constrained simplex optimization procedure
    • K. Müller and L. D. Brown, Location of saddle points and minimum energy paths by a constrained simplex optimization procedure, Theor. Chim. Acta 53, 75 (1979). TCHAAM 0040-5744 10.1007/BF00547608
    • (1979) Theor. Chim. Acta , vol.53 , pp. 75
    • Müller, K.1    Brown, L.D.2
  • 39
    • 85045081113 scopus 로고    scopus 로고
    • Searching for activation functions
    • ABS/1710.05941
    • P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, CoRR abs/1710.05941 (2017).
    • (2017) CoRR
    • Ramachandran, P.1    Zoph, B.2    Le, Q.V.3
  • 42
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • F. Pedregosa, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12, 2825 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825
    • Pedregosa, F.1
  • 43
    • 70349527948 scopus 로고    scopus 로고
    • Estimating the sampling error: Distribution of transition matrices and functions of transition matrices for given trajectory data.
    • P. Metzner, F. Noé, and C. Schütte, Estimating the sampling error: Distribution of transition matrices and functions of transition matrices for given trajectory data., Phys. Rev. E 80, 021106 (2009). PLEEE8 1539-3755 10.1103/PhysRevE.80.021106
    • (2009) Phys. Rev. e , vol.80 , pp. 021106
    • Metzner, P.1    Noé, F.2    Schütte, C.3
  • 44
    • 85048862795 scopus 로고    scopus 로고
    • MDEntropy: Information-theoretic analyses for molecular dynamics
    • C. X. Hernández and V. S. Pande, MDEntropy: Information-theoretic analyses for molecular dynamics, J. Open Source Softw. 2, 427 (2017). 2475-9066 10.21105/joss.00427
    • (2017) J. Open Source Softw. , vol.2 , pp. 427
    • Hernández, C.X.1    Pande, V.S.2
  • 47
    • 84944750932 scopus 로고    scopus 로고
    • MDTraj: A modern open library for the analysis of molecular dynamics trajectories
    • R. T. McGibbon, MDTraj: A modern open library for the analysis of molecular dynamics trajectories, Biophys. J. 109, 1528 (2015). BIOJAU 0006-3495 10.1016/j.bpj.2015.08.015
    • (2015) Biophys. J. , vol.109 , pp. 1528
    • McGibbon, R.T.1
  • 48
    • 84996548618 scopus 로고    scopus 로고
    • Optimized parameter selection reveals trends in Markov state models for protein folding
    • B. E. Husic, R. T. McGibbon, M. M. Sultan, and V. S. Pande, Optimized parameter selection reveals trends in Markov state models for protein folding, J. Chem. Phys. 145, 194103 (2016). JCPSA6 0021-9606 10.1063/1.4967809
    • (2016) J. Chem. Phys. , vol.145 , pp. 194103
    • Husic, B.E.1    McGibbon, R.T.2    Sultan, M.M.3    Pande, V.S.4
  • 49
    • 84944046499 scopus 로고    scopus 로고
    • Kinetic distance and kinetic maps from molecular dynamics simulation
    • F. Noé and C. Clementi, Kinetic distance and kinetic maps from molecular dynamics simulation, J. Chem. Theory Comput. 11, 5002 (2015). 1549-9618 10.1021/acs.jctc.5b00553
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5002
    • Noé, F.1    Clementi, C.2
  • 50
    • 85029535706 scopus 로고    scopus 로고
    • Osprey: Hyperparameter optimization for machine learning
    • R. T. McGibbon, Osprey: Hyperparameter optimization for machine learning, J. Open Source Softw. 1, 34 (2016). 2475-9066 10.21105/joss.00034
    • (2016) J. Open Source Softw. , vol.1 , pp. 34
    • McGibbon, R.T.1
  • 51
    • 85048898512 scopus 로고    scopus 로고
    • See Supplemental Material at for the following information: Fig. S1 contains a bootstrapped mutual information analysis showing that the VDE captures more information from the original features than previous linear methods; Fig. S2 shows that the VDE is able to produce similar models using internal protein coordinates, unlike previous linear methods
    • See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.97.062412 for the following information: Fig. S1 contains a bootstrapped mutual information analysis showing that the VDE captures more information from the original features than previous linear methods; Fig. S2 shows that the VDE is able to produce similar models using internal protein coordinates, unlike previous linear methods.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.