-
1
-
-
80055081145
-
How fast-folding proteins fold
-
Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding proteins fold. Science 334, 517-520 (2011).
-
(2011)
Science
, vol.334
, pp. 517-520
-
-
Lindorff-Larsen, K.1
Piana, S.2
Dror, R.O.3
Shaw, D.E.4
-
2
-
-
85029770667
-
Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
-
Plattner, N., Doerr, S., Fabritiis, G. D. & Noé, F. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat. Chem. 9, 1005-1011 (2017).
-
(2017)
Nat. Chem
, vol.9
, pp. 1005-1011
-
-
Plattner, N.1
Doerr, S.2
Fabritiis, G.D.3
Noé, F.4
-
3
-
-
84890917722
-
Cloud-based simulations on google exacycle reveal ligand modulation of gpcr activation pathways
-
Kohlhoff, K. J. et al. Cloud-based simulations on google exacycle reveal ligand modulation of gpcr activation pathways. Nat. Chem. 6, 15-21 (2014).
-
(2014)
Nat. Chem.
, vol.6
, pp. 15-21
-
-
Kohlhoff, K.J.1
-
4
-
-
84964649164
-
HTMD: High-throughput molecular dynamics for molecular discovery
-
Doerr, S., Harvey, M. J., Noé, F. & De Fabritiis, G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12, 1845-1852 (2016).
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 1845-1852
-
-
Doerr, S.1
Harvey, M.J.2
Noé, F.3
Fabritiis, G.D.4
-
5
-
-
54849440125
-
Graphical processing units for quantum chemistry
-
Ufimtsev, I. S. & Martinez, T. J. Graphical processing units for quantum chemistry. Comp. Sci. Eng. 10, 26-34 (2008).
-
(2008)
Comp. Sci. Eng.
, vol.10
, pp. 26-34
-
-
Ufimtsev, I.S.1
Martinez, T.J.2
-
6
-
-
85039965112
-
-
ed Grotendorst, J., John von Neumann Institute for Computing, Jülich
-
Marx, D. & Hutter, J. in Modern Methods and Algorithms of Quantum Chemistry of NIC Series Vol. 1, 301-449 Ab initio molecular dynamics: theory and implementation (ed Grotendorst, J.) (John von Neumann Institute for Computing, Jülich, 2000).
-
(2000)
Modern Methods and Algorithms of Quantum Chemistry of NIC Series Vol. 1, 301-449 Ab Initio Molecular Dynamics: Theory and Implementation
-
-
Marx, D.1
Hutter, J.2
-
7
-
-
0000573002
-
A direct approach to conformational dynamics based on hybrid monte carlo
-
Schütte, C., Fischer, A., Huisinga, W. & Deuflhard, P. A direct approach to conformational dynamics based on hybrid monte carlo. J. Comput. Phys. 151, 146-168 (1999).
-
(1999)
J. Comput. Phys.
, vol.151
, pp. 146-168
-
-
Schütte, C.1
Fischer, A.2
Huisinga, W.3
Deuflhard, P.4
-
8
-
-
79957488000
-
Markov models of molecular kinetics: Generation and validation
-
Prinz, J.-H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011).
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 174105
-
-
Prinz, J.H.1
-
9
-
-
2942567954
-
Describing protein folding kinetics by molecular dynamics simulations: 1
-
Swope, W. C., Pitera, J. W. & Suits, F. Describing protein folding kinetics by molecular dynamics simulations: 1. Theory J. Phys. Chem. B 108, 6571-6581 (2004).
-
(2004)
Theory J. Phys. Chem. B
, vol.108
, pp. 6571-6581
-
-
Swope, W.C.1
Pitera, J.W.2
Suits, F.3
-
10
-
-
34247339716
-
Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
-
Noé, F., Horenko, I., Schütte, C. & Smith, J. C. Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126, 155102 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 155102
-
-
Noé, F.1
Horenko, I.2
Schütte, C.3
Smith, J.C.4
-
11
-
-
34247338100
-
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
-
Chodera, J. D. et al. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 155101
-
-
Chodera, J.D.1
-
12
-
-
44949178407
-
Coarse master equations for peptide folding dynamics
-
Buchete, N. V. & Hummer, G. Coarse master equations for peptide folding dynamics. J. Phys. Chem. B 112, 6057-6069 (2008).
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 6057-6069
-
-
Buchete, N.V.1
Hummer, G.2
-
13
-
-
84946887423
-
PyEMMA 2: A software package for estimation, validation and analysis of Markov models
-
Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation and analysis of Markov models. J. Chem. Theory Comput. 11, 5525-5542 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 5525-5542
-
-
Scherer, M.K.1
-
14
-
-
85008895438
-
Msmbuilder: Statistical models for biomolecular dynamics
-
Harrigan, M. P. et al. Msmbuilder: statistical models for biomolecular dynamics. Biophys. J. 112, 10-15 (2017).
-
(2017)
Biophys. J.
, vol.112
, pp. 10-15
-
-
Harrigan, M.P.1
-
15
-
-
0029878720
-
Vmd - Visual molecular dynamics
-
Humphrey, W., Dalke, A. & Schulten, K. Vmd - visual molecular dynamics. J. Mol. Graph. 14, 33-38 (1996).
-
(1996)
J. Mol. Graph.
, vol.14
, pp. 33-38
-
-
Humphrey, W.1
Dalke, A.2
Schulten, K.3
-
16
-
-
84944750932
-
Mdtraj: A modern open library for the analysis of molecular dynamics trajectories
-
McGibbon, R. T. et al. Mdtraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528-1532 (2015).
-
(2015)
Biophys. J.
, vol.109
, pp. 1528-1532
-
-
McGibbon, R.T.1
-
17
-
-
84879735744
-
A variational approach to modeling slow processes in stochastic dynamical systems
-
Noé, F. & Nüske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 11, 635-655 (2013).
-
(2013)
Multiscale Model. Simul.
, vol.11
, pp. 635-655
-
-
Noé, F.1
Nüske, F.2
-
18
-
-
84898431921
-
Variational approach to molecular kinetics
-
Nüske, F., Keller, B. G., Pérez-Hernández, G., Mey, A. S. J. S. & Noé, F. Variational approach to molecular kinetics. J. Chem. Theory Comput. 10, 1739-1752 (2014).
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 1739-1752
-
-
Nüske, F.1
Keller, B.G.2
Pérez-Hernández, G.3
Mey, A.S.J.S.4
Noé, F.5
-
19
-
-
84886081379
-
Identification of slow molecular order parameters for Markov model construction
-
Perez-Hernandez, G., Paul, F., Giorgino, T., D Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013).
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 015102
-
-
Perez-Hernandez, G.1
Paul, F.2
Giorgino, T.3
Fabritiis, G.D.4
Noé, F.5
-
20
-
-
84876005630
-
Improvements in Markov state model construction reveal many non-native interactions in the folding of ntl9
-
Schwantes, C. R. & Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of ntl9. J. Chem. Theory Comput. 9, 2000-2009 (2013).
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 2000-2009
-
-
Schwantes, C.R.1
Pande, V.S.2
-
21
-
-
0000302959
-
Separation of a mixture of independent signals using time delayed correlations
-
Molgedey, L. & Schuster, H. G. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72, 3634-3637 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 3634-3637
-
-
Molgedey, L.1
Schuster, H.G.2
-
23
-
-
0041376445
-
Kernel-based nonlinear blind source separation
-
Harmeling, S., Ziehe, A., Kawanabe, M. & Müller, K.-R. Kernel-based nonlinear blind source separation. Neural Comput. 15, 1089-1124 (2003).
-
(2003)
Neural Comput.
, vol.15
, pp. 1089-1124
-
-
Harmeling, S.1
Ziehe, A.2
Kawanabe, M.3
Müller, K.R.4
-
24
-
-
21844455782
-
Spectral properties of dynamical systems, model reduction and decompositions
-
Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynam. 41, 309-325 (2005).
-
(2005)
Nonlinear Dynam.
, vol.41
, pp. 309-325
-
-
Mezić, I.1
-
26
-
-
85009209557
-
On dynamic mode decomposition: Theory and applications
-
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391-421 (2014).
-
(2014)
J. Comput. Dyn.
, vol.1
, pp. 391-421
-
-
Tu, J.H.1
Rowley, C.W.2
Luchtenburg, D.M.3
Brunton, S.L.4
Kutz, J.N.5
-
27
-
-
84945465279
-
A data-driven approximation of the koopman operator: Extending dynamic mode decomposition
-
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A data-driven approximation of the koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307-1346 (2015).
-
(2015)
J. Nonlinear Sci.
, vol.25
, pp. 1307-1346
-
-
Williams, M.O.1
Kevrekidis, I.G.2
Rowley, C.W.3
-
28
-
-
85018507542
-
Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations
-
Wu, H. et al. Variational koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations. J. Chem. Phys. 146, 154104 (2017).
-
(2017)
J. Chem. Phys.
, vol.146
, pp. 154104
-
-
Wu, H.1
-
29
-
-
85015633287
-
Collective variables for the study of long-time kinetics from molecular trajectories: Theory and methods
-
Noé, F. & Clementi, C. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. Curr. Opin. Struc. Biol. 43, 141-147 (2017).
-
(2017)
Curr. Opin. Struc. Biol.
, vol.43
, pp. 141-147
-
-
Noé, F.1
Clementi, C.2
-
31
-
-
84944046499
-
Kinetic distance and kinetic maps from molecular dynamics simulation
-
Noé, F. & Clementi, C. Kinetic distance and kinetic maps from molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002-5011 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 5002-5011
-
-
Noé, F.1
Clementi, C.2
-
32
-
-
84994779169
-
Commute maps: Separating slowly-mixing molecular configurations for kinetic modeling
-
Noé, F., Banisch, R. & Clementi, C. Commute maps: separating slowly-mixing molecular configurations for kinetic modeling. J. Chem. Theory Comput. 12, 5620-5630 (2016).
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 5620-5630
-
-
Noé, F.1
Banisch, R.2
Clementi, C.3
-
33
-
-
84903302956
-
-
Springer, Heidelberg
-
Bowman, G. R., Pande, V. S. & Noé, F. in Advances in Experimental Medicine and Biology Vol. 797 An introduction to Markov state models and their application to long timescale molecular simulation (Springer, Heidelberg, 2014).
-
(2014)
Advances in Experimental Medicine and Biology Vol. 797 An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
-
-
Bowman, G.R.1
Pande, V.S.2
Noé, F.3
-
34
-
-
85015202332
-
Ward clustering improves cross-validated Markov state models of protein folding
-
Husic, B. E. & Pande, V. S. Ward clustering improves cross-validated Markov state models of protein folding. J. Chem. Theory Comput. 13, 963-967 (2017).
-
(2017)
J. Chem. Theory Comput.
, vol.13
, pp. 963-967
-
-
Husic, B.E.1
Pande, V.S.2
-
35
-
-
84921367680
-
Automatic state partitioning for multibody systems (APM): An efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems
-
Sheong, F. K., Silva, D.-A., Meng, L., Zhao, Y. & Huang, X. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. J. Chem. Theory Comput. 11, 17-27 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 17-27
-
-
Sheong, F.K.1
Silva, D.A.2
Meng, L.3
Zhao, Y.4
Huang, X.5
-
36
-
-
84923869832
-
Gaussian Markov transition models of molecular kinetics
-
Wu, H. & Noé, F. Gaussian Markov transition models of molecular kinetics. J. Chem. Phys. 142, 084104 (2015).
-
(2015)
J. Chem. Phys.
, vol.142
, pp. 084104
-
-
Wu, H.1
Noé, F.2
-
37
-
-
85016601461
-
Set-free Markov state model building
-
Weber, M., Fackeldey, K. & Schütte, C. Set-free Markov state model building. J. Chem. Phys. 146, 124133 (2017).
-
(2017)
J. Chem. Phys.
, vol.146
, pp. 124133
-
-
Weber, M.1
Fackeldey, K.2
Schütte, C.3
-
38
-
-
70349631761
-
Progress and challenges in the automated construction of Markov state models for full protein systems
-
Bowman, G. R., Beauchamp, K. A., Boxer, G. & Pande, V. S. Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131, 124101 (2009).
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 124101
-
-
Bowman, G.R.1
Beauchamp, K.A.2
Boxer, G.3
Pande, V.S.4
-
39
-
-
84944103365
-
Estimation and uncertainty of reversible Markov models
-
Trendelkamp-Schroer, B., Wu, H., Paul, F. & Noé, F. Estimation and uncertainty of reversible Markov models. J. Chem. Phys. 143, 174101 (2015).
-
(2015)
J. Chem. Phys.
, vol.143
, pp. 174101
-
-
Trendelkamp-Schroer, B.1
Wu, H.2
Paul, F.3
Noé, F.4
-
40
-
-
33846326884
-
A coarse graining method for the identification of transition rates between molecular conformations
-
Kube, S. & Weber, M. A coarse graining method for the identification of transition rates between molecular conformations. J. Chem. Phys. 126, 024103 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 024103
-
-
Kube, S.1
Weber, M.2
-
41
-
-
84877781129
-
Hierarchical nyström methods for constructing Markov state models for conformational dynamics
-
Yao, Y. et al. Hierarchical nyström methods for constructing Markov state models for conformational dynamics. J. Chem. Phys. 138, 174106 (2013).
-
(2013)
J. Chem. Phys.
, vol.138
, pp. 174106
-
-
Yao, Y.1
-
42
-
-
85039970652
-
Genpcca - Markov state models for non-equilibrium steady states
-
Fackeldey, K. & Weber, M. Genpcca - Markov state models for non-equilibrium steady states. WIAS Rep. 29, 70-80 (2017).
-
(2017)
WIAS Rep.
, vol.29
, pp. 70-80
-
-
Fackeldey, K.1
Weber, M.2
-
43
-
-
85019085892
-
Toward a direct and scalable identification of reduced models for categorical processes
-
Gerber, S. & Horenko, I. Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl Acad. Sci. USA 114, 4863-4868 (2017).
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 4863-4868
-
-
Gerber, S.1
Horenko, I.2
-
44
-
-
84937926071
-
Optimal dimensionality reduction of multistate kinetic and Markov-state models
-
Hummer, G. & Szabo, A. Optimal dimensionality reduction of multistate kinetic and Markov-state models. J. Phys. Chem. B 119, 9029-9037 (2015).
-
(2015)
J. Phys. Chem. B
, vol.119
, pp. 9029-9037
-
-
Hummer, G.1
Szabo, A.2
-
45
-
-
84989948053
-
Dimensional reduction of Markov state models from renormalization group theory
-
Orioli, S. & Faccioli, P. Dimensional reduction of Markov state models from renormalization group theory. J. Chem. Phys. 145, 124120 (2016).
-
(2016)
J. Chem. Phys.
, vol.145
, pp. 124120
-
-
Orioli, S.1
Faccioli, P.2
-
46
-
-
84903361996
-
Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules
-
Noé, F., Wu, H., Prinz, J.-H. & Plattner, N. Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. J. Chem. Phys. 139, 184114 (2013).
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 184114
-
-
Noé, F.1
Wu, H.2
Prinz, J.H.3
Plattner, N.4
-
48
-
-
84961290952
-
Variational cross-validation of slow dynamical modes in molecular kinetics
-
McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142, 124105 (2015).
-
(2015)
J. Chem. Phys.
, vol.142
, pp. 124105
-
-
McGibbon, R.T.1
Pande, V.S.2
-
49
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. E. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
50
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Curran Associates, Inc.
-
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems Vol. 1, 1097-1105 (Curran Associates, Inc., 2012).
-
(2012)
NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems
, vol.1
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
51
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015).
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
-
52
-
-
85005996229
-
Hierarchical time-lagged independent component analysis: Computing slow modes and reaction coordinates for large molecular systems
-
Perez-Hernandez, G. & Noé, F. Hierarchical time-lagged independent component analysis: computing slow modes and reaction coordinates for large molecular systems. J. Chem. Theory Comput. 12, 6118-6129 (2016).
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 6118-6129
-
-
Perez-Hernandez, G.1
Noé, F.2
-
53
-
-
84957072943
-
Variational tensor approach for approximating the rare-event kinetics of macromolecular systems
-
Nüske, F., Schneider, R., Vitalini, F. & Noé, F. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys. 144, 054105 (2016).
-
(2016)
J. Chem. Phys.
, vol.144
, pp. 054105
-
-
Nüske, F.1
Schneider, R.2
Vitalini, F.3
Noé, F.4
-
54
-
-
0001046226
-
Hamiltonian systems and transformations in hilbert space
-
Koopman, B. Hamiltonian systems and transformations in hilbert space. Proc. Natl Acad. Sci. USA 17, 315-318 (1931).
-
(1931)
Proc. Natl Acad. Sci. USA
, vol.17
, pp. 315-318
-
-
Koopman, B.1
-
55
-
-
84951868452
-
Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state
-
Knoch, F. & Speck, T. Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state. New J. Phys. 17, 115004 (2015).
-
(2015)
New J. Phys.
, vol.17
, pp. 115004
-
-
Knoch, F.1
Speck, T.2
-
56
-
-
84927750073
-
Building Markov state models for periodically driven non-equilibrium systems
-
Wang, H. & Schütte, C. Building Markov state models for periodically driven non-equilibrium systems. J. Chem. Theory Comput. 11, 1819-1831 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 1819-1831
-
-
Wang, H.1
Schütte, C.2
-
57
-
-
34547260991
-
Data-based parameter estimation of generalized multidimensional Langevin processes
-
Horenko, I., Hartmann, C., Schütte, C., Noé, F. Data-based parameter estimation of generalized multidimensional Langevin processes. Phys. Rev. E 76, 016706 (2007).
-
(2007)
Phys. Rev. e
, vol.76
, pp. 016706
-
-
Horenko, I.1
Hartmann, C.2
Schütte, C.3
Noé, F.4
-
58
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals 2, 303-314 (1989).
-
(1989)
Math. Control Signals
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
59
-
-
85083953781
-
-
Eigen, D., Rolfe, J., Fergus, R. & LeCun, Y. Understanding deep architectures using a recursive convolutional network. Preprint at http://arXiv:1312.1847 (2014).
-
(2014)
Understanding Deep Architectures Using A Recursive Convolutional Network
-
-
Eigen, D.1
Rolfe, J.2
Fergus, R.3
LeCun, Y.4
-
60
-
-
0002003773
-
-
(ed Platt, J. et al.) Efficient learning of sparse representations with an energy-based model, MIT Press
-
Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. in Advances in Neural Information Processing Systems 18 (ed Platt, J. et al.) Efficient learning of sparse representations with an energy-based model (MIT Press, 2006).
-
(2006)
Advances in Neural Information Processing Systems 18
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
61
-
-
84864073449
-
-
Greedy layer-wise training of deep networks, MIT Press
-
Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. in Advances in Neural Information Processing Systems 19, Vol. 19, 153 Greedy layer-wise training of deep networks (MIT Press, 2007).
-
(2007)
Advances in Neural Information Processing Systems 19
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
62
-
-
84897553529
-
Deep canonical correlation analysis
-
Galen, A., Arora, R., Bilmes, J. & Livescu, K. Deep canonical correlation analysis. In ICML'13 Proceedings of the 30th International Conference on International Conference on Machine Learning Vol. 28, III-1247-III-1255 (2013).
-
(2013)
ICML'13 Proceedings of the 30th International Conference on International Conference on Machine Learning
, vol.28
, pp. III1247-III1255
-
-
Galen, A.1
Arora, R.2
Bilmes, J.3
Livescu, K.4
-
63
-
-
84878874568
-
Fuzzy spectral clustering by PCCA+: Application to Markov state models and data classification
-
Röblitz, S. & Weber, M. Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv. Data Anal. Classif. 7, 147-179 (2013).
-
(2013)
Adv. Data Anal. Classif.
, vol.7
, pp. 147-179
-
-
Röblitz, S.1
Weber, M.2
-
64
-
-
77956841151
-
On the approximation quality of Markov state models
-
Sarich, M., Noé, F. & Schütte, C. On the approximation quality of Markov state models. Multiscale Model. Simul. 8, 1154-1177 (2010).
-
(2010)
Multiscale Model. Simul.
, vol.8
, pp. 1154-1177
-
-
Sarich, M.1
Noé, F.2
Schütte, C.3
-
65
-
-
70450255797
-
Constructing the full ensemble of folding pathways from short off-equilibrium simulations
-
Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L. & Weikl, T. R. Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl Acad. Sci. USA 106, 19011-19016 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 19011-19016
-
-
Noé, F.1
Schütte, C.2
Vanden-Eijnden, E.3
Reich, L.4
Weikl, T.R.5
-
66
-
-
0032096386
-
On the piecewise analysis of networks of linear threshold neurons
-
Hahnloser, R. L. T. On the piecewise analysis of networks of linear threshold neurons. Neural Netw. 11, 691-697 (1998).
-
(1998)
Neural Netw.
, vol.11
, pp. 691-697
-
-
Hahnloser, R.L.T.1
-
67
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
ACM, New York
-
Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) Vol. 27, 807-814 (ACM, New York, 2010).
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
, vol.27
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
69
-
-
85039968158
-
-
Nüske, F., Wu, H., Wehmeyer, C., Clementi, C. & Noé, F. Markov state models from short non-equilibrium simulations - analysis and correction of estimation bias. Preprint at http://arXiv:1701.01665 (2017).
-
(2017)
Markov State Models from Short Non-equilibrium Simulations - Analysis and Correction of Estimation Bias
-
-
Nüske, F.1
Wu, H.2
Wehmeyer, C.3
Clementi, C.4
Noé, F.5
-
70
-
-
84973621071
-
Multiensemble Markov models of molecular thermodynamics and kinetics
-
Wu, H., Paul, F., Wehmeyer, C. & Noé, F. Multiensemble Markov models of molecular thermodynamics and kinetics. Proc. Natl Acad. Sci. USA 113, E3221-E3230 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E3221-E3230
-
-
Wu, H.1
Paul, F.2
Wehmeyer, C.3
Noé, F.4
-
71
-
-
84915746596
-
Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states
-
Wu, H., Mey, A. S. J. S., Rosta, E. & Noé, F. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J. Chem. Phys. 141, 214106 (2014).
-
(2014)
J. Chem. Phys.
, vol.141
, pp. 214106
-
-
Wu, H.1
Mey, A.S.J.S.2
Rosta, E.3
Noé, F.4
-
72
-
-
79960157219
-
Dynamical reweighting: Improved estimates of dynamical properties from simulations at multiple temperatures
-
Chodera, J. D., Swope, W. C., Noé, F., Prinz, J.-H. & Pande, V. S. Dynamical reweighting: improved estimates of dynamical properties from simulations at multiple temperatures. J. Phys. Chem. 134, 244107 (2011).
-
(2011)
J. Phys. Chem.
, vol.134
, pp. 244107
-
-
Chodera, J.D.1
Swope, W.C.2
Noé, F.3
Prinz, J.H.4
Pande, V.S.5
-
73
-
-
79960156218
-
Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics
-
Prinz, J.-H. et al. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J. Chem. Phys. 134, 244108 (2011).
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 244108
-
-
Prinz, J.H.1
-
74
-
-
84921324758
-
Free energies from dynamic weighted histogram analysis using unbiased Markov state model
-
Rosta, E. & Hummer, G. Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J. Chem. Theory Comput. 11, 276-285 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 276-285
-
-
Rosta, E.1
Hummer, G.2
-
75
-
-
84921349976
-
XTRAM: Estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states
-
Mey, A. S. J. S., Wu, H. & Noé, F. xTRAM: estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states. Phys. Rev. X 4, 041018 (2014).
-
(2014)
Phys. Rev. X
, vol.4
, pp. 041018
-
-
Mey, A.S.J.S.1
Wu, H.2
Noé, F.3
-
76
-
-
85026680489
-
Combining experimental and simulation data of molecular processes via augmented Markov models
-
Olsson, S., Wu, H., Paul, F., Clementi, C. & Noé, F. Combining experimental and simulation data of molecular processes via augmented Markov models. Proc. Natl Acad. Sci. USA 114, 8265-8270 (2017).
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 8265-8270
-
-
Olsson, S.1
Wu, H.2
Paul, F.3
Clementi, C.4
Noé, F.5
-
77
-
-
34547341247
-
Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics
-
Hinrichs, N. S. & Pande, V. S. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys. 126, 244101 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 244101
-
-
Hinrichs, N.S.1
Pande, V.S.2
-
78
-
-
46149122776
-
Probability distributions of molecular observables computed from Markov models
-
Noé, F. Probability distributions of molecular observables computed from Markov models. J. Chem. Phys. 128, 244103 (2008).
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 244103
-
-
Noé, F.1
-
79
-
-
77956920981
-
Probability distributions of molecular observables computed from Markov models. II: Uncertainties in observables and their time-evolution
-
Chodera, J. D. & Noé, F. Probability distributions of molecular observables computed from Markov models. ii: Uncertainties in observables and their time-evolution. J. Chem. Phys. 133, 105102 (2010).
-
(2010)
J. Chem. Phys.
, vol.133
, pp. 105102
-
-
Chodera, J.D.1
Noé, F.2
-
80
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998).
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
82
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn Res. 15, 1929-1958 (2014).
-
(2014)
J. Mach. Learn Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
83
-
-
84971640658
-
-
Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
-
(2015)
Keras
-
-
Chollet, F.1
|