메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Erratum to: VAMPnets for deep learning of molecular kinetics (Nature Communications, (2018), 9, 1, (5), 10.1038/s41467-017-02388-1);VAMPnets for deep learning of molecular kinetics

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL BINDING; DATA PROCESSING; ERROR ANALYSIS; LEARNING; MARKOV CHAIN; MOLECULAR ANALYSIS; NEUROLOGY; REACTION KINETICS;

EID: 85039927762     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-06999-0     Document Type: Erratum
Times cited : (594)

References (84)
  • 2
    • 85029770667 scopus 로고    scopus 로고
    • Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
    • Plattner, N., Doerr, S., Fabritiis, G. D. & Noé, F. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat. Chem. 9, 1005-1011 (2017).
    • (2017) Nat. Chem , vol.9 , pp. 1005-1011
    • Plattner, N.1    Doerr, S.2    Fabritiis, G.D.3    Noé, F.4
  • 3
    • 84890917722 scopus 로고    scopus 로고
    • Cloud-based simulations on google exacycle reveal ligand modulation of gpcr activation pathways
    • Kohlhoff, K. J. et al. Cloud-based simulations on google exacycle reveal ligand modulation of gpcr activation pathways. Nat. Chem. 6, 15-21 (2014).
    • (2014) Nat. Chem. , vol.6 , pp. 15-21
    • Kohlhoff, K.J.1
  • 4
    • 84964649164 scopus 로고    scopus 로고
    • HTMD: High-throughput molecular dynamics for molecular discovery
    • Doerr, S., Harvey, M. J., Noé, F. & De Fabritiis, G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12, 1845-1852 (2016).
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 1845-1852
    • Doerr, S.1    Harvey, M.J.2    Noé, F.3    Fabritiis, G.D.4
  • 5
    • 54849440125 scopus 로고    scopus 로고
    • Graphical processing units for quantum chemistry
    • Ufimtsev, I. S. & Martinez, T. J. Graphical processing units for quantum chemistry. Comp. Sci. Eng. 10, 26-34 (2008).
    • (2008) Comp. Sci. Eng. , vol.10 , pp. 26-34
    • Ufimtsev, I.S.1    Martinez, T.J.2
  • 7
    • 0000573002 scopus 로고    scopus 로고
    • A direct approach to conformational dynamics based on hybrid monte carlo
    • Schütte, C., Fischer, A., Huisinga, W. & Deuflhard, P. A direct approach to conformational dynamics based on hybrid monte carlo. J. Comput. Phys. 151, 146-168 (1999).
    • (1999) J. Comput. Phys. , vol.151 , pp. 146-168
    • Schütte, C.1    Fischer, A.2    Huisinga, W.3    Deuflhard, P.4
  • 8
    • 79957488000 scopus 로고    scopus 로고
    • Markov models of molecular kinetics: Generation and validation
    • Prinz, J.-H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011).
    • (2011) J. Chem. Phys. , vol.134 , pp. 174105
    • Prinz, J.H.1
  • 9
    • 2942567954 scopus 로고    scopus 로고
    • Describing protein folding kinetics by molecular dynamics simulations: 1
    • Swope, W. C., Pitera, J. W. & Suits, F. Describing protein folding kinetics by molecular dynamics simulations: 1. Theory J. Phys. Chem. B 108, 6571-6581 (2004).
    • (2004) Theory J. Phys. Chem. B , vol.108 , pp. 6571-6581
    • Swope, W.C.1    Pitera, J.W.2    Suits, F.3
  • 10
    • 34247339716 scopus 로고    scopus 로고
    • Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
    • Noé, F., Horenko, I., Schütte, C. & Smith, J. C. Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126, 155102 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 155102
    • Noé, F.1    Horenko, I.2    Schütte, C.3    Smith, J.C.4
  • 11
    • 34247338100 scopus 로고    scopus 로고
    • Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
    • Chodera, J. D. et al. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 155101
    • Chodera, J.D.1
  • 12
    • 44949178407 scopus 로고    scopus 로고
    • Coarse master equations for peptide folding dynamics
    • Buchete, N. V. & Hummer, G. Coarse master equations for peptide folding dynamics. J. Phys. Chem. B 112, 6057-6069 (2008).
    • (2008) J. Phys. Chem. B , vol.112 , pp. 6057-6069
    • Buchete, N.V.1    Hummer, G.2
  • 13
    • 84946887423 scopus 로고    scopus 로고
    • PyEMMA 2: A software package for estimation, validation and analysis of Markov models
    • Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation and analysis of Markov models. J. Chem. Theory Comput. 11, 5525-5542 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5525-5542
    • Scherer, M.K.1
  • 14
    • 85008895438 scopus 로고    scopus 로고
    • Msmbuilder: Statistical models for biomolecular dynamics
    • Harrigan, M. P. et al. Msmbuilder: statistical models for biomolecular dynamics. Biophys. J. 112, 10-15 (2017).
    • (2017) Biophys. J. , vol.112 , pp. 10-15
    • Harrigan, M.P.1
  • 16
    • 84944750932 scopus 로고    scopus 로고
    • Mdtraj: A modern open library for the analysis of molecular dynamics trajectories
    • McGibbon, R. T. et al. Mdtraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528-1532 (2015).
    • (2015) Biophys. J. , vol.109 , pp. 1528-1532
    • McGibbon, R.T.1
  • 17
    • 84879735744 scopus 로고    scopus 로고
    • A variational approach to modeling slow processes in stochastic dynamical systems
    • Noé, F. & Nüske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 11, 635-655 (2013).
    • (2013) Multiscale Model. Simul. , vol.11 , pp. 635-655
    • Noé, F.1    Nüske, F.2
  • 19
    • 84886081379 scopus 로고    scopus 로고
    • Identification of slow molecular order parameters for Markov model construction
    • Perez-Hernandez, G., Paul, F., Giorgino, T., D Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013).
    • (2013) J. Chem. Phys. , vol.139 , pp. 015102
    • Perez-Hernandez, G.1    Paul, F.2    Giorgino, T.3    Fabritiis, G.D.4    Noé, F.5
  • 20
    • 84876005630 scopus 로고    scopus 로고
    • Improvements in Markov state model construction reveal many non-native interactions in the folding of ntl9
    • Schwantes, C. R. & Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of ntl9. J. Chem. Theory Comput. 9, 2000-2009 (2013).
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 2000-2009
    • Schwantes, C.R.1    Pande, V.S.2
  • 21
    • 0000302959 scopus 로고
    • Separation of a mixture of independent signals using time delayed correlations
    • Molgedey, L. & Schuster, H. G. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72, 3634-3637 (1994).
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 24
    • 21844455782 scopus 로고    scopus 로고
    • Spectral properties of dynamical systems, model reduction and decompositions
    • Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynam. 41, 309-325 (2005).
    • (2005) Nonlinear Dynam. , vol.41 , pp. 309-325
    • Mezić, I.1
  • 27
    • 84945465279 scopus 로고    scopus 로고
    • A data-driven approximation of the koopman operator: Extending dynamic mode decomposition
    • Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A data-driven approximation of the koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307-1346 (2015).
    • (2015) J. Nonlinear Sci. , vol.25 , pp. 1307-1346
    • Williams, M.O.1    Kevrekidis, I.G.2    Rowley, C.W.3
  • 28
    • 85018507542 scopus 로고    scopus 로고
    • Variational koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations
    • Wu, H. et al. Variational koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations. J. Chem. Phys. 146, 154104 (2017).
    • (2017) J. Chem. Phys. , vol.146 , pp. 154104
    • Wu, H.1
  • 29
    • 85015633287 scopus 로고    scopus 로고
    • Collective variables for the study of long-time kinetics from molecular trajectories: Theory and methods
    • Noé, F. & Clementi, C. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. Curr. Opin. Struc. Biol. 43, 141-147 (2017).
    • (2017) Curr. Opin. Struc. Biol. , vol.43 , pp. 141-147
    • Noé, F.1    Clementi, C.2
  • 31
    • 84944046499 scopus 로고    scopus 로고
    • Kinetic distance and kinetic maps from molecular dynamics simulation
    • Noé, F. & Clementi, C. Kinetic distance and kinetic maps from molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002-5011 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5002-5011
    • Noé, F.1    Clementi, C.2
  • 32
    • 84994779169 scopus 로고    scopus 로고
    • Commute maps: Separating slowly-mixing molecular configurations for kinetic modeling
    • Noé, F., Banisch, R. & Clementi, C. Commute maps: separating slowly-mixing molecular configurations for kinetic modeling. J. Chem. Theory Comput. 12, 5620-5630 (2016).
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 5620-5630
    • Noé, F.1    Banisch, R.2    Clementi, C.3
  • 34
    • 85015202332 scopus 로고    scopus 로고
    • Ward clustering improves cross-validated Markov state models of protein folding
    • Husic, B. E. & Pande, V. S. Ward clustering improves cross-validated Markov state models of protein folding. J. Chem. Theory Comput. 13, 963-967 (2017).
    • (2017) J. Chem. Theory Comput. , vol.13 , pp. 963-967
    • Husic, B.E.1    Pande, V.S.2
  • 35
    • 84921367680 scopus 로고    scopus 로고
    • Automatic state partitioning for multibody systems (APM): An efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems
    • Sheong, F. K., Silva, D.-A., Meng, L., Zhao, Y. & Huang, X. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. J. Chem. Theory Comput. 11, 17-27 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 17-27
    • Sheong, F.K.1    Silva, D.A.2    Meng, L.3    Zhao, Y.4    Huang, X.5
  • 36
    • 84923869832 scopus 로고    scopus 로고
    • Gaussian Markov transition models of molecular kinetics
    • Wu, H. & Noé, F. Gaussian Markov transition models of molecular kinetics. J. Chem. Phys. 142, 084104 (2015).
    • (2015) J. Chem. Phys. , vol.142 , pp. 084104
    • Wu, H.1    Noé, F.2
  • 37
  • 38
    • 70349631761 scopus 로고    scopus 로고
    • Progress and challenges in the automated construction of Markov state models for full protein systems
    • Bowman, G. R., Beauchamp, K. A., Boxer, G. & Pande, V. S. Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131, 124101 (2009).
    • (2009) J. Chem. Phys. , vol.131 , pp. 124101
    • Bowman, G.R.1    Beauchamp, K.A.2    Boxer, G.3    Pande, V.S.4
  • 39
    • 84944103365 scopus 로고    scopus 로고
    • Estimation and uncertainty of reversible Markov models
    • Trendelkamp-Schroer, B., Wu, H., Paul, F. & Noé, F. Estimation and uncertainty of reversible Markov models. J. Chem. Phys. 143, 174101 (2015).
    • (2015) J. Chem. Phys. , vol.143 , pp. 174101
    • Trendelkamp-Schroer, B.1    Wu, H.2    Paul, F.3    Noé, F.4
  • 40
    • 33846326884 scopus 로고    scopus 로고
    • A coarse graining method for the identification of transition rates between molecular conformations
    • Kube, S. & Weber, M. A coarse graining method for the identification of transition rates between molecular conformations. J. Chem. Phys. 126, 024103 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 024103
    • Kube, S.1    Weber, M.2
  • 41
    • 84877781129 scopus 로고    scopus 로고
    • Hierarchical nyström methods for constructing Markov state models for conformational dynamics
    • Yao, Y. et al. Hierarchical nyström methods for constructing Markov state models for conformational dynamics. J. Chem. Phys. 138, 174106 (2013).
    • (2013) J. Chem. Phys. , vol.138 , pp. 174106
    • Yao, Y.1
  • 42
    • 85039970652 scopus 로고    scopus 로고
    • Genpcca - Markov state models for non-equilibrium steady states
    • Fackeldey, K. & Weber, M. Genpcca - Markov state models for non-equilibrium steady states. WIAS Rep. 29, 70-80 (2017).
    • (2017) WIAS Rep. , vol.29 , pp. 70-80
    • Fackeldey, K.1    Weber, M.2
  • 43
    • 85019085892 scopus 로고    scopus 로고
    • Toward a direct and scalable identification of reduced models for categorical processes
    • Gerber, S. & Horenko, I. Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl Acad. Sci. USA 114, 4863-4868 (2017).
    • (2017) Proc. Natl Acad. Sci. USA , vol.114 , pp. 4863-4868
    • Gerber, S.1    Horenko, I.2
  • 44
    • 84937926071 scopus 로고    scopus 로고
    • Optimal dimensionality reduction of multistate kinetic and Markov-state models
    • Hummer, G. & Szabo, A. Optimal dimensionality reduction of multistate kinetic and Markov-state models. J. Phys. Chem. B 119, 9029-9037 (2015).
    • (2015) J. Phys. Chem. B , vol.119 , pp. 9029-9037
    • Hummer, G.1    Szabo, A.2
  • 45
    • 84989948053 scopus 로고    scopus 로고
    • Dimensional reduction of Markov state models from renormalization group theory
    • Orioli, S. & Faccioli, P. Dimensional reduction of Markov state models from renormalization group theory. J. Chem. Phys. 145, 124120 (2016).
    • (2016) J. Chem. Phys. , vol.145 , pp. 124120
    • Orioli, S.1    Faccioli, P.2
  • 46
    • 84903361996 scopus 로고    scopus 로고
    • Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules
    • Noé, F., Wu, H., Prinz, J.-H. & Plattner, N. Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. J. Chem. Phys. 139, 184114 (2013).
    • (2013) J. Chem. Phys. , vol.139 , pp. 184114
    • Noé, F.1    Wu, H.2    Prinz, J.H.3    Plattner, N.4
  • 48
    • 84961290952 scopus 로고    scopus 로고
    • Variational cross-validation of slow dynamical modes in molecular kinetics
    • McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142, 124105 (2015).
    • (2015) J. Chem. Phys. , vol.142 , pp. 124105
    • McGibbon, R.T.1    Pande, V.S.2
  • 51
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015).
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 52
    • 85005996229 scopus 로고    scopus 로고
    • Hierarchical time-lagged independent component analysis: Computing slow modes and reaction coordinates for large molecular systems
    • Perez-Hernandez, G. & Noé, F. Hierarchical time-lagged independent component analysis: computing slow modes and reaction coordinates for large molecular systems. J. Chem. Theory Comput. 12, 6118-6129 (2016).
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 6118-6129
    • Perez-Hernandez, G.1    Noé, F.2
  • 53
    • 84957072943 scopus 로고    scopus 로고
    • Variational tensor approach for approximating the rare-event kinetics of macromolecular systems
    • Nüske, F., Schneider, R., Vitalini, F. & Noé, F. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys. 144, 054105 (2016).
    • (2016) J. Chem. Phys. , vol.144 , pp. 054105
    • Nüske, F.1    Schneider, R.2    Vitalini, F.3    Noé, F.4
  • 54
    • 0001046226 scopus 로고
    • Hamiltonian systems and transformations in hilbert space
    • Koopman, B. Hamiltonian systems and transformations in hilbert space. Proc. Natl Acad. Sci. USA 17, 315-318 (1931).
    • (1931) Proc. Natl Acad. Sci. USA , vol.17 , pp. 315-318
    • Koopman, B.1
  • 55
    • 84951868452 scopus 로고    scopus 로고
    • Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state
    • Knoch, F. & Speck, T. Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state. New J. Phys. 17, 115004 (2015).
    • (2015) New J. Phys. , vol.17 , pp. 115004
    • Knoch, F.1    Speck, T.2
  • 56
    • 84927750073 scopus 로고    scopus 로고
    • Building Markov state models for periodically driven non-equilibrium systems
    • Wang, H. & Schütte, C. Building Markov state models for periodically driven non-equilibrium systems. J. Chem. Theory Comput. 11, 1819-1831 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 1819-1831
    • Wang, H.1    Schütte, C.2
  • 57
    • 34547260991 scopus 로고    scopus 로고
    • Data-based parameter estimation of generalized multidimensional Langevin processes
    • Horenko, I., Hartmann, C., Schütte, C., Noé, F. Data-based parameter estimation of generalized multidimensional Langevin processes. Phys. Rev. E 76, 016706 (2007).
    • (2007) Phys. Rev. e , vol.76 , pp. 016706
    • Horenko, I.1    Hartmann, C.2    Schütte, C.3    Noé, F.4
  • 58
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals 2, 303-314 (1989).
    • (1989) Math. Control Signals , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 63
    • 84878874568 scopus 로고    scopus 로고
    • Fuzzy spectral clustering by PCCA+: Application to Markov state models and data classification
    • Röblitz, S. & Weber, M. Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv. Data Anal. Classif. 7, 147-179 (2013).
    • (2013) Adv. Data Anal. Classif. , vol.7 , pp. 147-179
    • Röblitz, S.1    Weber, M.2
  • 64
    • 77956841151 scopus 로고    scopus 로고
    • On the approximation quality of Markov state models
    • Sarich, M., Noé, F. & Schütte, C. On the approximation quality of Markov state models. Multiscale Model. Simul. 8, 1154-1177 (2010).
    • (2010) Multiscale Model. Simul. , vol.8 , pp. 1154-1177
    • Sarich, M.1    Noé, F.2    Schütte, C.3
  • 65
    • 70450255797 scopus 로고    scopus 로고
    • Constructing the full ensemble of folding pathways from short off-equilibrium simulations
    • Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L. & Weikl, T. R. Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl Acad. Sci. USA 106, 19011-19016 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19011-19016
    • Noé, F.1    Schütte, C.2    Vanden-Eijnden, E.3    Reich, L.4    Weikl, T.R.5
  • 66
    • 0032096386 scopus 로고    scopus 로고
    • On the piecewise analysis of networks of linear threshold neurons
    • Hahnloser, R. L. T. On the piecewise analysis of networks of linear threshold neurons. Neural Netw. 11, 691-697 (1998).
    • (1998) Neural Netw. , vol.11 , pp. 691-697
    • Hahnloser, R.L.T.1
  • 70
    • 84973621071 scopus 로고    scopus 로고
    • Multiensemble Markov models of molecular thermodynamics and kinetics
    • Wu, H., Paul, F., Wehmeyer, C. & Noé, F. Multiensemble Markov models of molecular thermodynamics and kinetics. Proc. Natl Acad. Sci. USA 113, E3221-E3230 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E3221-E3230
    • Wu, H.1    Paul, F.2    Wehmeyer, C.3    Noé, F.4
  • 71
    • 84915746596 scopus 로고    scopus 로고
    • Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states
    • Wu, H., Mey, A. S. J. S., Rosta, E. & Noé, F. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J. Chem. Phys. 141, 214106 (2014).
    • (2014) J. Chem. Phys. , vol.141 , pp. 214106
    • Wu, H.1    Mey, A.S.J.S.2    Rosta, E.3    Noé, F.4
  • 72
    • 79960157219 scopus 로고    scopus 로고
    • Dynamical reweighting: Improved estimates of dynamical properties from simulations at multiple temperatures
    • Chodera, J. D., Swope, W. C., Noé, F., Prinz, J.-H. & Pande, V. S. Dynamical reweighting: improved estimates of dynamical properties from simulations at multiple temperatures. J. Phys. Chem. 134, 244107 (2011).
    • (2011) J. Phys. Chem. , vol.134 , pp. 244107
    • Chodera, J.D.1    Swope, W.C.2    Noé, F.3    Prinz, J.H.4    Pande, V.S.5
  • 73
    • 79960156218 scopus 로고    scopus 로고
    • Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics
    • Prinz, J.-H. et al. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J. Chem. Phys. 134, 244108 (2011).
    • (2011) J. Chem. Phys. , vol.134 , pp. 244108
    • Prinz, J.H.1
  • 74
    • 84921324758 scopus 로고    scopus 로고
    • Free energies from dynamic weighted histogram analysis using unbiased Markov state model
    • Rosta, E. & Hummer, G. Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J. Chem. Theory Comput. 11, 276-285 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 276-285
    • Rosta, E.1    Hummer, G.2
  • 75
    • 84921349976 scopus 로고    scopus 로고
    • XTRAM: Estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states
    • Mey, A. S. J. S., Wu, H. & Noé, F. xTRAM: estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states. Phys. Rev. X 4, 041018 (2014).
    • (2014) Phys. Rev. X , vol.4 , pp. 041018
    • Mey, A.S.J.S.1    Wu, H.2    Noé, F.3
  • 76
    • 85026680489 scopus 로고    scopus 로고
    • Combining experimental and simulation data of molecular processes via augmented Markov models
    • Olsson, S., Wu, H., Paul, F., Clementi, C. & Noé, F. Combining experimental and simulation data of molecular processes via augmented Markov models. Proc. Natl Acad. Sci. USA 114, 8265-8270 (2017).
    • (2017) Proc. Natl Acad. Sci. USA , vol.114 , pp. 8265-8270
    • Olsson, S.1    Wu, H.2    Paul, F.3    Clementi, C.4    Noé, F.5
  • 77
    • 34547341247 scopus 로고    scopus 로고
    • Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics
    • Hinrichs, N. S. & Pande, V. S. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys. 126, 244101 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 244101
    • Hinrichs, N.S.1    Pande, V.S.2
  • 78
    • 46149122776 scopus 로고    scopus 로고
    • Probability distributions of molecular observables computed from Markov models
    • Noé, F. Probability distributions of molecular observables computed from Markov models. J. Chem. Phys. 128, 244103 (2008).
    • (2008) J. Chem. Phys. , vol.128 , pp. 244103
    • Noé, F.1
  • 79
    • 77956920981 scopus 로고    scopus 로고
    • Probability distributions of molecular observables computed from Markov models. II: Uncertainties in observables and their time-evolution
    • Chodera, J. D. & Noé, F. Probability distributions of molecular observables computed from Markov models. ii: Uncertainties in observables and their time-evolution. J. Chem. Phys. 133, 105102 (2010).
    • (2010) J. Chem. Phys. , vol.133 , pp. 105102
    • Chodera, J.D.1    Noé, F.2
  • 80
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998).
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 83
    • 84971640658 scopus 로고    scopus 로고
    • Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
    • (2015) Keras
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.