메뉴 건너뛰기




Volumn 112, Issue 1, 2017, Pages 10-15

MSMBuilder: Statistical Models for Biomolecular Dynamics

Author keywords

[No Author keywords available]

Indexed keywords

CSK TYROSINE-PROTEIN KINASE; PROTEIN TYROSINE KINASE;

EID: 85008895438     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2016.10.042     Document Type: Article
Times cited : (237)

References (36)
  • 1
    • 46249090563 scopus 로고    scopus 로고
    • Anton, a special-purpose machine for molecular dynamics simulation
    • 1 Shaw, D.E., Deneroff, M.M., et al., Wang, S.C., Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM, 51, 2008, 91.
    • (2008) Commun. ACM , vol.51 , pp. 91
    • Shaw, D.E.1    Deneroff, M.M.2    Wang, S.C.3
  • 2
    • 64649105762 scopus 로고    scopus 로고
    • Accelerating molecular dynamic simulation on graphics processing units
    • 2 Friedrichs, M.S., Eastman, P., et al., Pande, V.S., Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30 (2009), 864–872.
    • (2009) J. Comput. Chem. , vol.30 , pp. 864-872
    • Friedrichs, M.S.1    Eastman, P.2    Pande, V.S.3
  • 3
    • 0034623787 scopus 로고    scopus 로고
    • COMPUTING: screen savers of the world unite!
    • 3 Shirts, M., Pande, V.S., COMPUTING: screen savers of the world unite!. Science 290 (2000), 1903–1904.
    • (2000) Science , vol.290 , pp. 1903-1904
    • Shirts, M.1    Pande, V.S.2
  • 4
    • 77949978021 scopus 로고    scopus 로고
    • High-throughput all-atom molecular dynamics simulations using distributed computing
    • 4 Buch, I., Harvey, M.J., et al., De Fabritiis, G., High-throughput all-atom molecular dynamics simulations using distributed computing. J. Chem. Inf. Model. 50 (2010), 397–403.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 397-403
    • Buch, I.1    Harvey, M.J.2    De Fabritiis, G.3
  • 5
    • 84890917722 scopus 로고    scopus 로고
    • Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways
    • 5 Kohlhoff, K.J., Shukla, D., et al., Pande, V.S., Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6 (2014), 15–21.
    • (2014) Nat. Chem. , vol.6 , pp. 15-21
    • Kohlhoff, K.J.1    Shukla, D.2    Pande, V.S.3
  • 6
    • 84907051441 scopus 로고    scopus 로고
    • Perspective: Markov models for long-timescale biomolecular dynamics
    • 6 Schwantes, C.R., McGibbon, R.T., Pande, V.S., Perspective: Markov models for long-timescale biomolecular dynamics. J. Chem. Phys., 141, 2014, 090901.
    • (2014) J. Chem. Phys. , vol.141 , pp. 090901
    • Schwantes, C.R.1    McGibbon, R.T.2    Pande, V.S.3
  • 7
    • 77956220940 scopus 로고    scopus 로고
    • Everything you wanted to know about Markov state models but were afraid to ask
    • 7 Pande, V.S., Beauchamp, K., Bowman, G.R., Everything you wanted to know about Markov state models but were afraid to ask. Methods 52 (2010), 99–105.
    • (2010) Methods , vol.52 , pp. 99-105
    • Pande, V.S.1    Beauchamp, K.2    Bowman, G.R.3
  • 8
    • 84900548447 scopus 로고    scopus 로고
    • Markov state models of biomolecular conformational dynamics
    • 8 Chodera, J.D., Noé, F., Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25 (2014), 135–144.
    • (2014) Curr. Opin. Struct. Biol. , vol.25 , pp. 135-144
    • Chodera, J.D.1    Noé, F.2
  • 10
    • 63449118443 scopus 로고    scopus 로고
    • Using generalized ensemble simulations and Markov state models to identify conformational states
    • 10 Bowman, G.R., Huang, X., Pande, V.S., Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49 (2009), 197–201.
    • (2009) Methods , vol.49 , pp. 197-201
    • Bowman, G.R.1    Huang, X.2    Pande, V.S.3
  • 11
    • 80053979296 scopus 로고    scopus 로고
    • MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale
    • 11 Beauchamp, K.A., Bowman, G.R., et al., Pande, V.S., MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J. Chem. Theory Comput. 7 (2011), 3412–3419.
    • (2011) J. Chem. Theory Comput. , vol.7 , pp. 3412-3419
    • Beauchamp, K.A.1    Bowman, G.R.2    Pande, V.S.3
  • 12
    • 84863672816 scopus 로고    scopus 로고
    • EMMA: a software package for Markov model building and analysis
    • 12 Senne, M., Trendelkamp-Schroer, B., et al., Noé, F., EMMA: a software package for Markov model building and analysis. J. Chem. Theory Comput. 8 (2012), 2223–2238.
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 2223-2238
    • Senne, M.1    Trendelkamp-Schroer, B.2    Noé, F.3
  • 13
    • 84946887423 scopus 로고    scopus 로고
    • PyEMMA 2: a software package for estimation, validation, and analysis of Markov models
    • 13 Scherer, M.K., Trendelkamp-Schroer, B., et al., Noé, F., PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11 (2015), 5525–5542.
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5525-5542
    • Scherer, M.K.1    Trendelkamp-Schroer, B.2    Noé, F.3
  • 14
    • 84964649164 scopus 로고    scopus 로고
    • HTMD: high-throughput molecular dynamics for molecular discovery
    • 14 Doerr, S., Harvey, M.J., et al., De Fabritiis, G., HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12 (2016), 1845–1852.
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 1845-1852
    • Doerr, S.1    Harvey, M.J.2    De Fabritiis, G.3
  • 15
    • 79551594605 scopus 로고    scopus 로고
    • Protein kinases: evolution of dynamic regulatory proteins
    • 15 Taylor, S.S., Kornev, A.P., Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36 (2011), 65–77.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 65-77
    • Taylor, S.S.1    Kornev, A.P.2
  • 16
    • 84919832780 scopus 로고    scopus 로고
    • Activation pathway of Src kinase reveals intermediate states as targets for drug design
    • 16 Shukla, D., Meng, Y., et al., Pande, V.S., Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun., 5, 2014, 3397.
    • (2014) Nat. Commun. , vol.5 , pp. 3397
    • Shukla, D.1    Meng, Y.2    Pande, V.S.3
  • 17
    • 84944750932 scopus 로고    scopus 로고
    • MDTraj: a modern open library for the analysis of molecular dynamics trajectories
    • 17 McGibbon, R.T., Beauchamp, K.A., et al., Pande, V.S., MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109 (2015), 1528–1532.
    • (2015) Biophys. J. , vol.109 , pp. 1528-1532
    • McGibbon, R.T.1    Beauchamp, K.A.2    Pande, V.S.3
  • 18
    • 0028972304 scopus 로고
    • C alpha-based torsion angles: a simple tool to analyze protein conformational changes
    • 18 Flocco, M.M., Mowbray, S.L., C alpha-based torsion angles: a simple tool to analyze protein conformational changes. Protein Sci. 4 (1995), 2118–2122.
    • (1995) Protein Sci. , vol.4 , pp. 2118-2122
    • Flocco, M.M.1    Mowbray, S.L.2
  • 19
    • 84865064420 scopus 로고    scopus 로고
    • Distribution of reciprocal of interatomic distances: a fast structural metric
    • 19 Zhou, T., Caflisch, A., Distribution of reciprocal of interatomic distances: a fast structural metric. J. Chem. Theory Comput. 8 (2012), 2930–2937.
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 2930-2937
    • Zhou, T.1    Caflisch, A.2
  • 20
    • 84876005630 scopus 로고    scopus 로고
    • Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
    • 20 Schwantes, C.R., Pande, V.S., Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9 (2013), 2000–2009.
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 2000-2009
    • Schwantes, C.R.1    Pande, V.S.2
  • 21
    • 84886081379 scopus 로고    scopus 로고
    • Identification of slow molecular order parameters for Markov model construction
    • 21 Pérez-Hernández, G., Paul, F., et al., Noé, F., Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys., 139, 2013, 015102.
    • (2013) J. Chem. Phys. , vol.139 , pp. 015102
    • Pérez-Hernández, G.1    Paul, F.2    Noé, F.3
  • 24
    • 84937468342 scopus 로고    scopus 로고
    • Efficient maximum likelihood parameterization of continuous-time Markov processes
    • 24 McGibbon, R.T., Pande, V.S., Efficient maximum likelihood parameterization of continuous-time Markov processes. J. Chem. Phys., 143, 2015, 034109.
    • (2015) J. Chem. Phys. , vol.143 , pp. 034109
    • McGibbon, R.T.1    Pande, V.S.2
  • 26
    • 34247481878 scopus 로고    scopus 로고
    • IPython: a system for interactive scientific computing
    • 26 Pérez, F., Granger, B.E., IPython: a system for interactive scientific computing. Comput. Sci. Eng., 9, 2007, 21.
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 21
    • Pérez, F.1    Granger, B.E.2
  • 27
    • 0029878720 scopus 로고    scopus 로고
    • VMD: visual molecular dynamics
    • 27–28
    • 27 Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics. J. Mol. Graph. 14 (1996), 33–38 27–28.
    • (1996) J. Mol. Graph. , vol.14 , pp. 33-38
    • Humphrey, W.1    Dalke, A.2    Schulten, K.3
  • 28
    • 13544256263 scopus 로고    scopus 로고
    • Robust Perron cluster analysis in conformation dynamics
    • 28 Deuflhard, P., Weber, M., Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398 (2005), 161–184.
    • (2005) Linear Algebra Appl. , vol.398 , pp. 161-184
    • Deuflhard, P.1    Weber, M.2
  • 30
    • 66849091890 scopus 로고    scopus 로고
    • Reactive flux and folding pathways in network models of coarse-grained protein dynamics
    • 30 Berezhkovskii, A., Hummer, G., Szabo, A., Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys., 130, 2009, 205102.
    • (2009) J. Chem. Phys. , vol.130 , pp. 205102
    • Berezhkovskii, A.1    Hummer, G.2    Szabo, A.3
  • 31
    • 70450255797 scopus 로고    scopus 로고
    • Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
    • 31 Noé, F., Schütte, C., et al., Weikl, T.R., Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. USA 106 (2009), 19011–19016.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 19011-19016
    • Noé, F.1    Schütte, C.2    Weikl, T.R.3
  • 32
    • 84898431921 scopus 로고    scopus 로고
    • Variational approach to molecular kinetics
    • 32 Nüske, F., Keller, B.G., et al., Noé, F., Variational approach to molecular kinetics. J. Chem. Theory Comput. 10 (2014), 1739–1752.
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 1739-1752
    • Nüske, F.1    Keller, B.G.2    Noé, F.3
  • 33
    • 84961290952 scopus 로고    scopus 로고
    • Variational cross-validation of slow dynamical modes in molecular kinetics
    • 33 McGibbon, R.T., Pande, V.S., Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys., 142, 2015, 124105.
    • (2015) J. Chem. Phys. , vol.142 , pp. 124105
    • McGibbon, R.T.1    Pande, V.S.2
  • 34
    • 85008901977 scopus 로고    scopus 로고
    • 34 McGibbon, R. T. 2014. Fs MD trajectories. https://figshare.com/articles/Fs_MD_Trajectories/1030363. http://dx.doi.org/10.6084/m9.figshare.1030363.v1.
    • T. 2014. Fs MD trajectories.
    • McGibbon, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.