메뉴 건너뛰기




Volumn 2018-April, Issue , 2018, Pages 1-6

Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; DROPS; VLSI CIRCUITS;

EID: 85048375978     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/VTS.2018.8368656     Document Type: Conference Paper
Times cited : (147)

References (35)
  • 4
    • 84995478886 scopus 로고    scopus 로고
    • Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
    • Y.-H. Chen et al., "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017.
    • (2017) IEEE Journal of Solid-State Circuits , vol.52 , Issue.1 , pp. 127-138
    • Chen, Y.-H.1
  • 5
    • 84994841295 scopus 로고    scopus 로고
    • Shidiannao: Shifting vision processing closer to the sensor
    • Z. Du et al., "Shidiannao: Shifting vision processing closer to the sensor," in ACM SIGARCH Computer Architecture News, vol. 43, pp. 92-104, 2015.
    • (2015) ACM SIGARCH Computer Architecture News , vol.43 , pp. 92-104
    • Du, Z.1
  • 7
    • 84940782827 scopus 로고    scopus 로고
    • 4.6 a1. 93tops/w scalable deep learning/inference processor with tetra-parallel mimd architecture for big-data applications
    • S. Park et al., "4.6 a1. 93tops/w scalable deep learning/inference processor with tetra-parallel mimd architecture for big-data applications," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 1-3, 2015.
    • (2015) IEEE International Solid-State Circuits Conference (ISSCC) , pp. 1-3
    • Park, S.1
  • 8
    • 0019923189 scopus 로고
    • Why systolic architectures?
    • H.-T. Kung, "Why systolic architectures?," IEEE computer, vol. 15, no. 1, pp. 37-46, 1982.
    • (1982) IEEE Computer , vol.15 , Issue.1 , pp. 37-46
    • Kung, H.-T.1
  • 9
    • 84973667604 scopus 로고    scopus 로고
    • Design and evaluation of reliability-oriented task re-mapping in mpsocs using time-series analysis of intermittent faults
    • IEEE
    • S. S. Sahoo et al., "Design and evaluation of reliability-oriented task re-mapping in mpsocs using time-series analysis of intermittent faults," in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 798-803, IEEE, 2016.
    • (2016) Design, Automation & Test in Europe Conference & Exhibition (DATE) , pp. 798-803
    • Sahoo, S.S.1
  • 12
    • 0141837018 scopus 로고    scopus 로고
    • Trends and challenges in VLSI circuit reliability
    • C. Constantinescu, "Trends and challenges in vlsi circuit reliability," IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003.
    • (2003) IEEE Micro , vol.23 , Issue.4 , pp. 14-19
    • Constantinescu, C.1
  • 19
    • 0017007684 scopus 로고
    • Special feature: Semiconductor memory reliability with error detecting and correcting codes
    • L. Levine et al., "Special feature: Semiconductor memory reliability with error detecting and correcting codes," Computer, vol. 9, no. 10, pp. 43-50, 1976.
    • (1976) Computer , vol.9 , Issue.10 , pp. 43-50
    • Levine, L.1
  • 20
    • 0020152817 scopus 로고
    • Concurrent error detection in alu's by recomputing with shifted operands
    • J. H. Patel et al., "Concurrent error detection in alu's by recomputing with shifted operands," IEEE Transactions on Computers, vol. 31, no. 7, pp. 589-595, 1982.
    • (1982) IEEE Transactions on Computers , vol.31 , Issue.7 , pp. 589-595
    • Patel, J.H.1
  • 21
    • 0036507790 scopus 로고    scopus 로고
    • Error detection by duplicated instructions in superscalar processors
    • N. Oh et al., "Error detection by duplicated instructions in superscalar processors," IEEE Transactions on Reliability, vol. 51, no. 1, pp. 63-75, 2002.
    • (2002) IEEE Transactions on Reliability , vol.51 , Issue.1 , pp. 63-75
    • Oh, N.1
  • 23
    • 33846595665 scopus 로고    scopus 로고
    • Sequential element design with built-in soft error resilience
    • M. Zhang et al., "Sequential element design with built-in soft error resilience," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 12, pp. 1368-1378, 2006.
    • (2006) IEEE Transactions on Very Large Scale Integration (VLSI) Systems , vol.14 , Issue.12 , pp. 1368-1378
    • Zhang, M.1
  • 27
    • 34250899070 scopus 로고
    • On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement
    • J. H. Kim et al., "On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement," IEEE Transactions on Computers, vol. 38, no. 4, pp. 515-525, 1989.
    • (1989) IEEE Transactions on Computers , vol.38 , Issue.4 , pp. 515-525
    • Kim, J.H.1
  • 28
    • 0027986087 scopus 로고
    • Fault-tolerant design methodology for systolic array architectures
    • M. Esonu et al., "Fault-tolerant design methodology for systolic array architectures," IEE Proceedings-Computers and Digital Techniques, vol. 141, no. 1, pp. 17-28, 1994.
    • (1994) IEE Proceedings-Computers and Digital Techniques , vol.141 , Issue.1 , pp. 17-28
    • Esonu, M.1
  • 29
    • 0024610641 scopus 로고
    • Restructuring for fault-tolerant systolic arrays
    • H. F. Li et al., "Restructuring for fault-tolerant systolic arrays," IEEE Transactions on Computers, vol. 38, no. 2, pp. 307-311, 1989.
    • (1989) IEEE Transactions on Computers , vol.38 , Issue.2 , pp. 307-311
    • Li, H.F.1
  • 30
    • 85063661576 scopus 로고    scopus 로고
    • Neuromorphic computing using non-volatile memory
    • G. W. Burr et al., "Neuromorphic computing using non-volatile memory," Advances in Physics: X, vol. 2, no. 1, pp. 89-124, 2017.
    • (2017) Advances in Physics: X , vol.2 , Issue.1 , pp. 89-124
    • Burr, G.W.1
  • 32
    • 84946495902 scopus 로고    scopus 로고
    • Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element
    • G. W. Burr et al., "Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element," IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3498-3507, 2015.
    • (2015) IEEE Transactions on Electron Devices , vol.62 , Issue.11 , pp. 3498-3507
    • Burr, G.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.