-
1
-
-
85048308019
-
-
arXiv:1606.01865 Recurrent Neural Networks for Multivariate Time Series with Missing Values, arXiv preprint.
-
Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, 2016, arXiv preprint arXiv:1606.01865.
-
(2016)
-
-
Che, Z.1
Purushotham, S.2
Cho, K.3
Sontag, D.4
Liu, Y.5
-
2
-
-
85048297830
-
-
arXiv:1703.07771 Multitask Learning and Benchmarking with Clinical Time Series Data, arXiv preprint.
-
H. Harutyunyan, H. Khachatrian, D.C. Kale, A. Galstyan, Multitask Learning and Benchmarking with Clinical Time Series Data, 2017, arXiv preprint arXiv:1703.07771.
-
(2017)
-
-
Harutyunyan, H.1
Khachatrian, H.2
Kale, D.C.3
Galstyan, A.4
-
3
-
-
0027132478
-
A new simplified acute physiology score (saps ii) based on a european/north american multicenter study
-
Le Gall, J.-R., Lemeshow, S., Saulnier, F., A new simplified acute physiology score (saps ii) based on a european/north american multicenter study. Jama 270 (1993), 2957–2963.
-
(1993)
Jama
, vol.270
, pp. 2957-2963
-
-
Le Gall, J.-R.1
Lemeshow, S.2
Saulnier, F.3
-
4
-
-
84861660228
-
Open-access mimic-ii database for intensive care research
-
IEEE
-
Lee, J., Scott, D.J., Villarroel, M., Clifford, G.D., Saeed, M., Mark, R.G., Open-access mimic-ii database for intensive care research. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2011, IEEE, 8315–8318.
-
(2011)
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
, pp. 8315-8318
-
-
Lee, J.1
Scott, D.J.2
Villarroel, M.3
Clifford, G.D.4
Saeed, M.5
Mark, R.G.6
-
5
-
-
84971287198
-
Mimic-iii, a freely accessible critical care database
-
Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G., Mimic-iii, a freely accessible critical care database. Scient. Data, 3, 2016.
-
(2016)
Scient. Data
, vol.3
-
-
Johnson, A.E.1
Pollard, T.J.2
Shen, L.3
Lehman, L.-W.H.4
Feng, M.5
Ghassemi, M.6
Moody, B.7
Szolovits, P.8
Celi, L.A.9
Mark, R.G.10
-
6
-
-
85042396773
-
Reproducibility in critical care: a mortality prediction case study
-
Machine Learning for Healthcare Conference, 361–376.
-
A.E. Johnson, T.J. Pollard, R.G. Mark, Reproducibility in critical care: a mortality prediction case study, in: Machine Learning for Healthcare Conference, 2017, 361–376.
-
(2017)
-
-
Johnson, A.E.1
Pollard, T.J.2
Mark, R.G.3
-
7
-
-
84954158331
-
Deep computational phenotyping
-
ACM
-
Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y., Deep computational phenotyping. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, ACM, 507–516.
-
(2015)
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 507-516
-
-
Che, Z.1
Kale, D.2
Li, W.3
Bahadori, M.T.4
Liu, Y.5
-
8
-
-
85027974126
-
Interpretable deep models for icu outcome prediction
-
AMIA Annual Symposium Proceedings, American Medical Informatics Association
-
Z. Che, S. Purushotham, R. Khemani, Y. Liu, Interpretable deep models for icu outcome prediction, in: AMIA Annual Symposium Proceedings, vol. 2016, American Medical Informatics Association, 2016, p. 371.
-
(2016)
, vol.2016
, pp. 371
-
-
Che, Z.1
Purushotham, S.2
Khemani, R.3
Liu, Y.4
-
9
-
-
84954176590
-
Dynamically modeling patient's health state from electronic medical records: a time series approach
-
ACM
-
Caballero Barajas, K.L., Akella, R., Dynamically modeling patient's health state from electronic medical records: a time series approach. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, ACM, 69–78.
-
(2015)
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 69-78
-
-
Caballero Barajas, K.L.1
Akella, R.2
-
10
-
-
84971255250
-
A computational approach to mortality prediction of alcohol use disorder inpatients
-
Calvert, J., Mao, Q., Rogers, A.J., Barton, C., Jay, M., Desautels, T., Mohamadlou, H., Jan, J., Das, R., A computational approach to mortality prediction of alcohol use disorder inpatients. Comp Biol Med 75 (2016), 74–79.
-
(2016)
Comp Biol Med
, vol.75
, pp. 74-79
-
-
Calvert, J.1
Mao, Q.2
Rogers, A.J.3
Barton, C.4
Jay, M.5
Desautels, T.6
Mohamadlou, H.7
Jan, J.8
Das, R.9
-
11
-
-
84906228837
-
A database-driven decision support system: customized mortality prediction
-
Celi, L.A., Galvin, S., Davidzon, G., Lee, J., Scott, D., Mark, R., A database-driven decision support system: customized mortality prediction. J Personal Med 2 (2012), 138–148.
-
(2012)
J Personal Med
, vol.2
, pp. 138-148
-
-
Celi, L.A.1
Galvin, S.2
Davidzon, G.3
Lee, J.4
Scott, D.5
Mark, R.6
-
12
-
-
84959548610
-
A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
-
AAAI
-
M. Ghassemi, M.A. Pimentel, T. Naumann, T. Brennan, D.A. Clifton, P. Szolovits, M. Feng, A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data, in: AAAI, 2015, pp. 446–453.
-
(2015)
, pp. 446-453
-
-
Ghassemi, M.1
Pimentel, M.A.2
Naumann, T.3
Brennan, T.4
Clifton, D.A.5
Szolovits, P.6
Feng, M.7
-
13
-
-
84907029489
-
Unfolding physiological state: Mortality modelling in intensive care units
-
ACM
-
Ghassemi, M., Naumann, T., Doshi-Velez, F., Brimmer, N., Joshi, R., Rumshisky, A., Szolovits, P., Unfolding physiological state: Mortality modelling in intensive care units. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, ACM, 75–84.
-
(2014)
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 75-84
-
-
Ghassemi, M.1
Naumann, T.2
Doshi-Velez, F.3
Brimmer, N.4
Joshi, R.5
Rumshisky, A.6
Szolovits, P.7
-
14
-
-
85009128708
-
Prediction using patient comparison vs. modeling: a case study for mortality prediction
-
IEEE
-
Hoogendoorn, M., el Hassouni, A., Mok, K., Ghassemi, M., Szolovits, P., Prediction using patient comparison vs. modeling: a case study for mortality prediction. 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, IEEE, 2464–2467.
-
(2016)
2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC)
, pp. 2464-2467
-
-
Hoogendoorn, M.1
el Hassouni, A.2
Mok, K.3
Ghassemi, M.4
Szolovits, P.5
-
15
-
-
84880838139
-
Prognostic physiology: modeling patient severity in intensive care units using radial domain folding
-
AMIA Annual Symposium Proceedings, American Medical Informatics Association
-
R. Joshi, P. Szolovits, Prognostic physiology: modeling patient severity in intensive care units using radial domain folding, in: AMIA Annual Symposium Proceedings, vol. 2012, American Medical Informatics Association, 2012, p. 1276.
-
(2012)
, vol.2012
, pp. 1276
-
-
Joshi, R.1
Szolovits, P.2
-
16
-
-
85001085996
-
Customization of a severity of illness score using local electronic medical record data
-
Lee, J., Maslove, D.M., Customization of a severity of illness score using local electronic medical record data. J. Intens. Care Med. 32 (2017), 38–47.
-
(2017)
J. Intens. Care Med.
, vol.32
, pp. 38-47
-
-
Lee, J.1
Maslove, D.M.2
-
17
-
-
84880830110
-
Risk stratification of icu patients using topic models inferred from unstructured progress notes
-
AMIA Annual Symposium Proceedings, American Medical Informatics Association
-
L.-W. Lehman, M. Saeed, W. Long, J. Lee, R. Mark, Risk stratification of icu patients using topic models inferred from unstructured progress notes, in: AMIA Annual Symposium Proceedings, vol. 2012, American Medical Informatics Association, 2012, p. 505.
-
(2012)
, vol.2012
, pp. 505
-
-
Lehman, L.-W.1
Saeed, M.2
Long, W.3
Lee, J.4
Mark, R.5
-
18
-
-
85007242848
-
Predicting icu mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements
-
AAAI
-
Y. Luo, Y. Xin, R. Joshi, L.A. Celi, P. Szolovits, Predicting icu mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements, in: AAAI, 2016, pp. 42–50.
-
(2016)
, pp. 42-50
-
-
Luo, Y.1
Xin, Y.2
Joshi, R.3
Celi, L.A.4
Szolovits, P.5
-
19
-
-
85041427282
-
Identifiable phenotyping using constrained non-negative matrix factorization
-
Machine Learning for Healthcare Conference
-
S. Joshi, S. Gunasekar, D. Sontag, G. Joydeep, Identifiable phenotyping using constrained non-negative matrix factorization, in: Machine Learning for Healthcare Conference, 2016, pp. 17–41.
-
(2016)
, pp. 17-41
-
-
Joshi, S.1
Gunasekar, S.2
Sontag, D.3
Joydeep, G.4
-
20
-
-
84929340147
-
Personalized mortality prediction driven by electronic medical data and a patient similarity metric
-
Lee, J., Maslove, D.M., Dubin, J.A., Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PloS One, 10, 2015, e0127428.
-
(2015)
PloS One
, vol.10
, pp. e0127428
-
-
Lee, J.1
Maslove, D.M.2
Dubin, J.A.3
-
21
-
-
85048308034
-
Patient-specific predictive modeling using random forests: an observational study for the critically ill
-
Lee, J., Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Med. Inf., 5, 2017.
-
(2017)
JMIR Med. Inf.
, vol.5
-
-
Lee, J.1
-
22
-
-
85027521403
-
Interpretable topic features for post-ICU mortality prediction
-
AMIA Annual Symposium Proceedings, American Medical Informatics Association
-
Y.-F. Luo, A. Rumshisky, Interpretable topic features for post-ICU mortality prediction, in: AMIA Annual Symposium Proceedings, vol. 2016, American Medical Informatics Association, 2016, p. 827.
-
(2016)
, vol.2016
, pp. 827
-
-
Luo, Y.-F.1
Rumshisky, A.2
-
23
-
-
0030015661
-
The sofa (sepsis-related organ failure assessment) score to describe organ dysfunction/failure
-
Vincent, J.-L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., Reinhart, C., Suter, P., Thijs, L., The sofa (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intens. Care Med. 22 (1996), 707–710.
-
(1996)
Intens. Care Med.
, vol.22
, pp. 707-710
-
-
Vincent, J.-L.1
Moreno, R.2
Takala, J.3
Willatts, S.4
De Mendonça, A.5
Bruining, H.6
Reinhart, C.7
Suter, P.8
Thijs, L.9
-
24
-
-
0019602768
-
Apache-acute physiology and chronic health evaluation: a physiologically based classification system
-
Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A., Lawrence, D.E., Apache-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9 (1981), 591–597.
-
(1981)
Crit. Care Med.
, vol.9
, pp. 591-597
-
-
Knaus, W.A.1
Zimmerman, J.E.2
Wagner, D.P.3
Draper, E.A.4
Lawrence, D.E.5
-
25
-
-
0030603526
-
Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
-
Dybowski, R., Gant, V., Weller, P., Chang, R., Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet 347 (1996), 1146–1150.
-
(1996)
The Lancet
, vol.347
, pp. 1146-1150
-
-
Dybowski, R.1
Gant, V.2
Weller, P.3
Chang, R.4
-
26
-
-
84875784410
-
A comparison of intensive care unit mortality prediction models through the use of data mining techniques
-
Kim, S., Kim, W., Park, R.W., A comparison of intensive care unit mortality prediction models through the use of data mining techniques. Health. Inf. Res. 17 (2011), 232–243.
-
(2011)
Health. Inf. Res.
, vol.17
, pp. 232-243
-
-
Kim, S.1
Kim, W.2
Park, R.W.3
-
27
-
-
0027288642
-
Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
-
Tu, J.V., Guerriere, M.R., Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comp. Biomed. Res. 26 (1993), 220–229.
-
(1993)
Comp. Biomed. Res.
, vol.26
, pp. 220-229
-
-
Tu, J.V.1
Guerriere, M.R.2
-
28
-
-
0027733424
-
Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression
-
Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association
-
G. Doig, K. Inman, W. Sibbald, C. Martin, J. Robertson, Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression, in: Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association, 1993, p. 361.
-
(1993)
, pp. 361
-
-
Doig, G.1
Inman, K.2
Sibbald, W.3
Martin, C.4
Robertson, J.5
-
29
-
-
0035113477
-
Artificial intelligence applications in the intensive care unit
-
Hanson, C.W. III, Marshall, B.E., Artificial intelligence applications in the intensive care unit. Crit. Care Med. 29 (2001), 427–435.
-
(2001)
Crit. Care Med.
, vol.29
, pp. 427-435
-
-
Hanson, C.W.1
Marshall, B.E.2
-
30
-
-
85024394244
-
Mortality prediction in the ICU based on mimic-ii results from the super ICU learner algorithm (SICULA) project
-
Springer
-
Pirracchio, R., Mortality prediction in the ICU based on mimic-ii results from the super ICU learner algorithm (SICULA) project. Secondary Analysis of Electronic Health Records, 2016, Springer, 295–313.
-
(2016)
Secondary Analysis of Electronic Health Records
, pp. 295-313
-
-
Pirracchio, R.1
-
31
-
-
85048291872
-
-
Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper Series.
-
E.C. Polley, M.J. Van der Laan, Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper Series, 2010.
-
(2010)
-
-
Polley, E.C.1
Van der Laan, M.J.2
-
32
-
-
85156259646
-
Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation
-
Advances in Neural Information Processing Systems
-
R. Caruana, S. Baluja, T. Mitchell, Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation, in: Advances in Neural Information Processing Systems, 1996, pp. 959–965.
-
(1996)
, pp. 959-965
-
-
Caruana, R.1
Baluja, S.2
Mitchell, T.3
-
33
-
-
0031080885
-
An evaluation of machine-learning methods for predicting pneumonia mortality
-
Cooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., Glymour, C., Gordon, G., Hanusa, B.H., et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif. Intell. Med. 9 (1997), 107–138.
-
(1997)
Artif. Intell. Med.
, vol.9
, pp. 107-138
-
-
Cooper, G.F.1
Aliferis, C.F.2
Ambrosino, R.3
Aronis, J.4
Buchanan, B.G.5
Caruana, R.6
Fine, M.J.7
Glymour, C.8
Gordon, G.9
Hanusa, B.H.10
-
34
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS One, 8, 2013, e66341.
-
(2013)
PloS One
, vol.8
, pp. e66341
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
35
-
-
84971396452
-
The digital revolution in phenotyping
-
Oellrich, A., Collier, N., Groza, T., Rebholz-Schuhmann, D., Shah, N., Bodenreider, O., Boland, M.R., Georgiev, I., Liu, H., Livingston, K., et al. The digital revolution in phenotyping. Brief. Bioinf., 2015, bbv083.
-
(2015)
Brief. Bioinf.
, pp. bbv083
-
-
Oellrich, A.1
Collier, N.2
Groza, T.3
Rebholz-Schuhmann, D.4
Shah, N.5
Bodenreider, O.6
Boland, M.R.7
Georgiev, I.8
Liu, H.9
Livingston, K.10
-
36
-
-
85048301225
-
-
arXiv:1512.03542 Distilling Knowledge From Deep Networks with Applications to Healthcare Domain arXiv preprint.
-
Z. Che, S. Purushotham, R. Khemani, Y. Liu, Distilling Knowledge From Deep Networks with Applications to Healthcare Domain, 2015 arXiv preprint arXiv:1512.03542.
-
(2015)
-
-
Che, Z.1
Purushotham, S.2
Khemani, R.3
Liu, Y.4
-
37
-
-
84945954195
-
A neural network based model for predicting psychological conditions
-
Springer
-
Dabek, F., Caban, J.J., A neural network based model for predicting psychological conditions. Brain Informatics and Health, 2015, Springer, 252–261.
-
(2015)
Brain Informatics and Health
, pp. 252-261
-
-
Dabek, F.1
Caban, J.J.2
-
38
-
-
84959900216
-
Pd disease state assessment in naturalistic environments using deep learning
-
Twenty-Ninth AAAI Conference on Artificial Intelligence
-
N.Y. Hammerla, J.M. Fisher, P. Andras, L. Rochester, R. Walker, T. Plötz, Pd disease state assessment in naturalistic environments using deep learning, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 1742–1748.
-
(2015)
, pp. 1742-1748
-
-
Hammerla, N.Y.1
Fisher, J.M.2
Andras, P.3
Rochester, L.4
Walker, R.5
Plötz, T.6
-
39
-
-
85048272703
-
-
arXiv:1511.03677 Learning to Diagnose with LSTM Recurrent Neural Networks arXiv preprint.
-
Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzell, Learning to Diagnose with LSTM Recurrent Neural Networks, 2015 arXiv preprint arXiv:1511.03677.
-
(2015)
-
-
Lipton, Z.C.1
Kale, D.C.2
Elkan, C.3
Wetzell, R.4
-
40
-
-
85088227827
-
Variational recurrent adversarial deep domain adaptation
-
International Conference on Learning Representations (ICLR).
-
S. Purushotham, W. Carvalho, T. Nilanon, Y. Liu, Variational recurrent adversarial deep domain adaptation, in: International Conference on Learning Representations (ICLR), 2017.
-
(2017)
-
-
Purushotham, S.1
Carvalho, W.2
Nilanon, T.3
Liu, Y.4
-
41
-
-
84929379643
-
A physiological time series dynamics-based approach to patient monitoring and outcome prediction
-
Li-wei, H.L., Adams, R.P., Mayaud, L., Moody, G.B., Malhotra, A., Mark, R.G., Nemati, S., A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J. Biomed. Health Inf. 19 (2015), 1068–1076.
-
(2015)
IEEE J. Biomed. Health Inf.
, vol.19
, pp. 1068-1076
-
-
Li-wei, H.L.1
Adams, R.P.2
Mayaud, L.3
Moody, G.B.4
Malhotra, A.5
Mark, R.G.6
Nemati, S.7
-
42
-
-
85048308034
-
Patient-specific predictive modeling using random forests: an observational study for the critically ill
-
Lee, J., Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Med. Inf., 5, 2017.
-
(2017)
JMIR Med. Inf.
, vol.5
-
-
Lee, J.1
-
44
-
-
84875639259
-
Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012
-
Computing in Cardiology (CinC), IEEE
-
I. Silva, G. Moody, D.J. Scott, L.A. Celi, R.G. Mark, Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012, in: Computing in Cardiology (CinC), 2012, IEEE, 2012, pp. 245–248.
-
(2012)
, pp. 245-248
-
-
Silva, I.1
Moody, G.2
Scott, D.J.3
Celi, L.A.4
Mark, R.G.5
-
45
-
-
34548705586
-
Super learner
-
Van der Laan, M.J., Polley, E.C., Hubbard, A.E., Super learner. Statist. Appl. Genet. Molec. Biol., 6, 2007.
-
(2007)
Statist. Appl. Genet. Molec. Biol.
, vol.6
-
-
Van der Laan, M.J.1
Polley, E.C.2
Hubbard, A.E.3
-
46
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
47
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P., Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10 (2009), 1–40.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
48
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell. 35 (2013), 1798–1828.
-
(2013)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
49
-
-
85162025724
-
-
Phone recognition with the mean-covariance restricted boltzmann machine, in: Advances in Neural Information Processing Systems
-
G. Dahl, A.-r. Mohamed, G.E. Hinton, et al, Phone recognition with the mean-covariance restricted boltzmann machine, in: Advances in Neural Information Processing Systems, 2010, pp. 469–477.
-
(2010)
, pp. 469-477
-
-
Dahl, G.1
Mohamed, A.-r.2
Hinton, G.E.3
-
50
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
Dahl, G.E., Yu, D., Deng, L., Acero, A., Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio, Speech, Lang. Process. 20 (2012), 30–42.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.20
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
51
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Advances in Neural Information Processing Systems
-
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
-
(2012)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
52
-
-
84913580146
-
Caffe: convolutional architecture for fast feature embedding
-
ACM
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., Caffe: convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia, 2014, ACM, 675–678.
-
(2014)
Proceedings of the 22nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
53
-
-
84937522268
-
Going deeper with convolutions
-
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
-
(2015)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
54
-
-
84865803833
-
Empirical evaluation and combination of advanced language modeling techniques
-
Twelfth Annual Conference of the International Speech Communication Association
-
T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. Černockỳ Empirical evaluation and combination of advanced language modeling techniques, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 605–608.
-
(2011)
, pp. 605-608
-
-
Mikolov, T.1
Deoras, A.2
Kombrink, S.3
Burget, L.4
Černockỳ, J.5
-
55
-
-
84954213973
-
Joint learning of words and meaning representations for open-text semantic parsing
-
Artificial Intelligence and Statistics
-
A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, in: Artificial Intelligence and Statistics, 2012, pp. 127–135.
-
(2012)
, pp. 127-135
-
-
Bordes, A.1
Glorot, X.2
Weston, J.3
Bengio, Y.4
-
56
-
-
84926179397
-
Linguistic regularities in continuous space word representations
-
hlt-Naacl
-
T. Mikolov, W.-T. Yih, G. Zweig, Linguistic regularities in continuous space word representations, in: hlt-Naacl, vol. 13, 2013, pp. 746–751.
-
(2013)
, vol.13
, pp. 746-751
-
-
Mikolov, T.1
Yih, W.-T.2
Zweig, G.3
-
57
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Advances in Neural Information Processing Systems
-
T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.
-
(2013)
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
58
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989), 359–366.
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
59
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
Proceedings of the 27th International Conference on Machine Learning (ICML)
-
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML), 2010, pp. 807–814.
-
(2010)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
60
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R.J., Zipser, D., A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1 (1989), 270–280.
-
(1989)
Neural Comput.
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
61
-
-
85048292340
-
-
arXiv:1409.1259 On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv preprint.
-
K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, 2014, arXiv preprint arXiv:1409.1259.
-
(2014)
-
-
Cho, K.1
van Merriënboer, B.2
Bahdanau, D.3
Bengio, Y.4
-
62
-
-
85048258472
-
-
arXiv:1412.3555 Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling arXiv preprint.
-
J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, 2014 arXiv preprint arXiv:1412.3555.
-
(2014)
-
-
Chung, J.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
63
-
-
84877724347
-
Multimodal learning with deep boltzmann machines
-
Advances in Neural Information Processing Systems
-
N. Srivastava, R.R. Salakhutdinov, Multimodal learning with deep boltzmann machines, in: Advances in Neural Information Processing Systems, 2012, pp. 2222–2230.
-
(2012)
, pp. 2222-2230
-
-
Srivastava, N.1
Salakhutdinov, R.R.2
-
64
-
-
85048264506
-
-
arXiv:1211.5590 Theano: New Features and Speed Improvements, arXiv preprint.
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, Theano: New Features and Speed Improvements, 2012, arXiv preprint arXiv:1211.5590.
-
(2012)
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
65
-
-
85048296712
-
-
http://keras.io Keras: Theano-Based Deep Learning Library Code: Documentation
-
F. Chollet, Keras: Theano-Based Deep Learning Library, 2015 Code: https://github.com/fchollet. Documentation: http://keras.io.
-
(2015)
-
-
Chollet, F.1
-
66
-
-
85048307968
-
-
arXiv:1505.00853 Empirical Evaluation of Rectified Activations in Convolutional Network arXiv preprint.
-
B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, 2015 arXiv preprint arXiv:1505.00853.
-
(2015)
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
67
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
68
-
-
60249094201
-
A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests
-
Luengo, J., García, S., Herrera, F., A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst. Appl. 36 (2009), 7798–7808.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7798-7808
-
-
Luengo, J.1
García, S.2
Herrera, F.3
|