메뉴 건너뛰기




Volumn 83, Issue , 2018, Pages 112-134

Benchmarking deep learning models on large healthcare datasets

Author keywords

Deep learning models; ICD 9 code group prediction; Length of stay; Mortality prediction; Super learner algorithm

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; DEEP NEURAL NETWORKS; FORECASTING; HEALTH CARE; INTENSIVE CARE UNITS; MEDICAL COMPUTING; NATURAL LANGUAGE PROCESSING SYSTEMS; SPEECH RECOGNITION;

EID: 85048265375     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2018.04.007     Document Type: Article
Times cited : (326)

References (68)
  • 1
    • 85048308019 scopus 로고    scopus 로고
    • arXiv:1606.01865 Recurrent Neural Networks for Multivariate Time Series with Missing Values, arXiv preprint.
    • Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent Neural Networks for Multivariate Time Series with Missing Values, 2016, arXiv preprint arXiv:1606.01865.
    • (2016)
    • Che, Z.1    Purushotham, S.2    Cho, K.3    Sontag, D.4    Liu, Y.5
  • 2
    • 85048297830 scopus 로고    scopus 로고
    • arXiv:1703.07771 Multitask Learning and Benchmarking with Clinical Time Series Data, arXiv preprint.
    • H. Harutyunyan, H. Khachatrian, D.C. Kale, A. Galstyan, Multitask Learning and Benchmarking with Clinical Time Series Data, 2017, arXiv preprint arXiv:1703.07771.
    • (2017)
    • Harutyunyan, H.1    Khachatrian, H.2    Kale, D.C.3    Galstyan, A.4
  • 3
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (saps ii) based on a european/north american multicenter study
    • Le Gall, J.-R., Lemeshow, S., Saulnier, F., A new simplified acute physiology score (saps ii) based on a european/north american multicenter study. Jama 270 (1993), 2957–2963.
    • (1993) Jama , vol.270 , pp. 2957-2963
    • Le Gall, J.-R.1    Lemeshow, S.2    Saulnier, F.3
  • 6
    • 85042396773 scopus 로고    scopus 로고
    • Reproducibility in critical care: a mortality prediction case study
    • Machine Learning for Healthcare Conference, 361–376.
    • A.E. Johnson, T.J. Pollard, R.G. Mark, Reproducibility in critical care: a mortality prediction case study, in: Machine Learning for Healthcare Conference, 2017, 361–376.
    • (2017)
    • Johnson, A.E.1    Pollard, T.J.2    Mark, R.G.3
  • 8
    • 85027974126 scopus 로고    scopus 로고
    • Interpretable deep models for icu outcome prediction
    • AMIA Annual Symposium Proceedings, American Medical Informatics Association
    • Z. Che, S. Purushotham, R. Khemani, Y. Liu, Interpretable deep models for icu outcome prediction, in: AMIA Annual Symposium Proceedings, vol. 2016, American Medical Informatics Association, 2016, p. 371.
    • (2016) , vol.2016 , pp. 371
    • Che, Z.1    Purushotham, S.2    Khemani, R.3    Liu, Y.4
  • 11
    • 84906228837 scopus 로고    scopus 로고
    • A database-driven decision support system: customized mortality prediction
    • Celi, L.A., Galvin, S., Davidzon, G., Lee, J., Scott, D., Mark, R., A database-driven decision support system: customized mortality prediction. J Personal Med 2 (2012), 138–148.
    • (2012) J Personal Med , vol.2 , pp. 138-148
    • Celi, L.A.1    Galvin, S.2    Davidzon, G.3    Lee, J.4    Scott, D.5    Mark, R.6
  • 12
    • 84959548610 scopus 로고    scopus 로고
    • A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
    • AAAI
    • M. Ghassemi, M.A. Pimentel, T. Naumann, T. Brennan, D.A. Clifton, P. Szolovits, M. Feng, A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data, in: AAAI, 2015, pp. 446–453.
    • (2015) , pp. 446-453
    • Ghassemi, M.1    Pimentel, M.A.2    Naumann, T.3    Brennan, T.4    Clifton, D.A.5    Szolovits, P.6    Feng, M.7
  • 15
    • 84880838139 scopus 로고    scopus 로고
    • Prognostic physiology: modeling patient severity in intensive care units using radial domain folding
    • AMIA Annual Symposium Proceedings, American Medical Informatics Association
    • R. Joshi, P. Szolovits, Prognostic physiology: modeling patient severity in intensive care units using radial domain folding, in: AMIA Annual Symposium Proceedings, vol. 2012, American Medical Informatics Association, 2012, p. 1276.
    • (2012) , vol.2012 , pp. 1276
    • Joshi, R.1    Szolovits, P.2
  • 16
    • 85001085996 scopus 로고    scopus 로고
    • Customization of a severity of illness score using local electronic medical record data
    • Lee, J., Maslove, D.M., Customization of a severity of illness score using local electronic medical record data. J. Intens. Care Med. 32 (2017), 38–47.
    • (2017) J. Intens. Care Med. , vol.32 , pp. 38-47
    • Lee, J.1    Maslove, D.M.2
  • 17
    • 84880830110 scopus 로고    scopus 로고
    • Risk stratification of icu patients using topic models inferred from unstructured progress notes
    • AMIA Annual Symposium Proceedings, American Medical Informatics Association
    • L.-W. Lehman, M. Saeed, W. Long, J. Lee, R. Mark, Risk stratification of icu patients using topic models inferred from unstructured progress notes, in: AMIA Annual Symposium Proceedings, vol. 2012, American Medical Informatics Association, 2012, p. 505.
    • (2012) , vol.2012 , pp. 505
    • Lehman, L.-W.1    Saeed, M.2    Long, W.3    Lee, J.4    Mark, R.5
  • 18
    • 85007242848 scopus 로고    scopus 로고
    • Predicting icu mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements
    • AAAI
    • Y. Luo, Y. Xin, R. Joshi, L.A. Celi, P. Szolovits, Predicting icu mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements, in: AAAI, 2016, pp. 42–50.
    • (2016) , pp. 42-50
    • Luo, Y.1    Xin, Y.2    Joshi, R.3    Celi, L.A.4    Szolovits, P.5
  • 19
    • 85041427282 scopus 로고    scopus 로고
    • Identifiable phenotyping using constrained non-negative matrix factorization
    • Machine Learning for Healthcare Conference
    • S. Joshi, S. Gunasekar, D. Sontag, G. Joydeep, Identifiable phenotyping using constrained non-negative matrix factorization, in: Machine Learning for Healthcare Conference, 2016, pp. 17–41.
    • (2016) , pp. 17-41
    • Joshi, S.1    Gunasekar, S.2    Sontag, D.3    Joydeep, G.4
  • 20
    • 84929340147 scopus 로고    scopus 로고
    • Personalized mortality prediction driven by electronic medical data and a patient similarity metric
    • Lee, J., Maslove, D.M., Dubin, J.A., Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PloS One, 10, 2015, e0127428.
    • (2015) PloS One , vol.10 , pp. e0127428
    • Lee, J.1    Maslove, D.M.2    Dubin, J.A.3
  • 21
    • 85048308034 scopus 로고    scopus 로고
    • Patient-specific predictive modeling using random forests: an observational study for the critically ill
    • Lee, J., Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Med. Inf., 5, 2017.
    • (2017) JMIR Med. Inf. , vol.5
    • Lee, J.1
  • 22
    • 85027521403 scopus 로고    scopus 로고
    • Interpretable topic features for post-ICU mortality prediction
    • AMIA Annual Symposium Proceedings, American Medical Informatics Association
    • Y.-F. Luo, A. Rumshisky, Interpretable topic features for post-ICU mortality prediction, in: AMIA Annual Symposium Proceedings, vol. 2016, American Medical Informatics Association, 2016, p. 827.
    • (2016) , vol.2016 , pp. 827
    • Luo, Y.-F.1    Rumshisky, A.2
  • 24
    • 0019602768 scopus 로고
    • Apache-acute physiology and chronic health evaluation: a physiologically based classification system
    • Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A., Lawrence, D.E., Apache-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9 (1981), 591–597.
    • (1981) Crit. Care Med. , vol.9 , pp. 591-597
    • Knaus, W.A.1    Zimmerman, J.E.2    Wagner, D.P.3    Draper, E.A.4    Lawrence, D.E.5
  • 25
    • 0030603526 scopus 로고    scopus 로고
    • Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
    • Dybowski, R., Gant, V., Weller, P., Chang, R., Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet 347 (1996), 1146–1150.
    • (1996) The Lancet , vol.347 , pp. 1146-1150
    • Dybowski, R.1    Gant, V.2    Weller, P.3    Chang, R.4
  • 26
    • 84875784410 scopus 로고    scopus 로고
    • A comparison of intensive care unit mortality prediction models through the use of data mining techniques
    • Kim, S., Kim, W., Park, R.W., A comparison of intensive care unit mortality prediction models through the use of data mining techniques. Health. Inf. Res. 17 (2011), 232–243.
    • (2011) Health. Inf. Res. , vol.17 , pp. 232-243
    • Kim, S.1    Kim, W.2    Park, R.W.3
  • 27
    • 0027288642 scopus 로고
    • Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu, J.V., Guerriere, M.R., Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comp. Biomed. Res. 26 (1993), 220–229.
    • (1993) Comp. Biomed. Res. , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, M.R.2
  • 28
    • 0027733424 scopus 로고
    • Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression
    • Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association
    • G. Doig, K. Inman, W. Sibbald, C. Martin, J. Robertson, Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression, in: Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association, 1993, p. 361.
    • (1993) , pp. 361
    • Doig, G.1    Inman, K.2    Sibbald, W.3    Martin, C.4    Robertson, J.5
  • 29
    • 0035113477 scopus 로고    scopus 로고
    • Artificial intelligence applications in the intensive care unit
    • Hanson, C.W. III, Marshall, B.E., Artificial intelligence applications in the intensive care unit. Crit. Care Med. 29 (2001), 427–435.
    • (2001) Crit. Care Med. , vol.29 , pp. 427-435
    • Hanson, C.W.1    Marshall, B.E.2
  • 30
    • 85024394244 scopus 로고    scopus 로고
    • Mortality prediction in the ICU based on mimic-ii results from the super ICU learner algorithm (SICULA) project
    • Springer
    • Pirracchio, R., Mortality prediction in the ICU based on mimic-ii results from the super ICU learner algorithm (SICULA) project. Secondary Analysis of Electronic Health Records, 2016, Springer, 295–313.
    • (2016) Secondary Analysis of Electronic Health Records , pp. 295-313
    • Pirracchio, R.1
  • 31
    • 85048291872 scopus 로고    scopus 로고
    • Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper Series.
    • E.C. Polley, M.J. Van der Laan, Super Learner in Prediction, U.C. Berkeley Division of Biostatistics Working Paper Series, 2010.
    • (2010)
    • Polley, E.C.1    Van der Laan, M.J.2
  • 32
    • 85156259646 scopus 로고    scopus 로고
    • Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation
    • Advances in Neural Information Processing Systems
    • R. Caruana, S. Baluja, T. Mitchell, Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation, in: Advances in Neural Information Processing Systems, 1996, pp. 959–965.
    • (1996) , pp. 959-965
    • Caruana, R.1    Baluja, S.2    Mitchell, T.3
  • 34
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS One, 8, 2013, e66341.
    • (2013) PloS One , vol.8 , pp. e66341
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 36
    • 85048301225 scopus 로고    scopus 로고
    • arXiv:1512.03542 Distilling Knowledge From Deep Networks with Applications to Healthcare Domain arXiv preprint.
    • Z. Che, S. Purushotham, R. Khemani, Y. Liu, Distilling Knowledge From Deep Networks with Applications to Healthcare Domain, 2015 arXiv preprint arXiv:1512.03542.
    • (2015)
    • Che, Z.1    Purushotham, S.2    Khemani, R.3    Liu, Y.4
  • 37
    • 84945954195 scopus 로고    scopus 로고
    • A neural network based model for predicting psychological conditions
    • Springer
    • Dabek, F., Caban, J.J., A neural network based model for predicting psychological conditions. Brain Informatics and Health, 2015, Springer, 252–261.
    • (2015) Brain Informatics and Health , pp. 252-261
    • Dabek, F.1    Caban, J.J.2
  • 38
    • 84959900216 scopus 로고    scopus 로고
    • Pd disease state assessment in naturalistic environments using deep learning
    • Twenty-Ninth AAAI Conference on Artificial Intelligence
    • N.Y. Hammerla, J.M. Fisher, P. Andras, L. Rochester, R. Walker, T. Plötz, Pd disease state assessment in naturalistic environments using deep learning, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 1742–1748.
    • (2015) , pp. 1742-1748
    • Hammerla, N.Y.1    Fisher, J.M.2    Andras, P.3    Rochester, L.4    Walker, R.5    Plötz, T.6
  • 39
    • 85048272703 scopus 로고    scopus 로고
    • arXiv:1511.03677 Learning to Diagnose with LSTM Recurrent Neural Networks arXiv preprint.
    • Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzell, Learning to Diagnose with LSTM Recurrent Neural Networks, 2015 arXiv preprint arXiv:1511.03677.
    • (2015)
    • Lipton, Z.C.1    Kale, D.C.2    Elkan, C.3    Wetzell, R.4
  • 40
    • 85088227827 scopus 로고    scopus 로고
    • Variational recurrent adversarial deep domain adaptation
    • International Conference on Learning Representations (ICLR).
    • S. Purushotham, W. Carvalho, T. Nilanon, Y. Liu, Variational recurrent adversarial deep domain adaptation, in: International Conference on Learning Representations (ICLR), 2017.
    • (2017)
    • Purushotham, S.1    Carvalho, W.2    Nilanon, T.3    Liu, Y.4
  • 42
    • 85048308034 scopus 로고    scopus 로고
    • Patient-specific predictive modeling using random forests: an observational study for the critically ill
    • Lee, J., Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Med. Inf., 5, 2017.
    • (2017) JMIR Med. Inf. , vol.5
    • Lee, J.1
  • 44
    • 84875639259 scopus 로고    scopus 로고
    • Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012
    • Computing in Cardiology (CinC), IEEE
    • I. Silva, G. Moody, D.J. Scott, L.A. Celi, R.G. Mark, Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012, in: Computing in Cardiology (CinC), 2012, IEEE, 2012, pp. 245–248.
    • (2012) , pp. 245-248
    • Silva, I.1    Moody, G.2    Scott, D.J.3    Celi, L.A.4    Mark, R.G.5
  • 49
    • 85162025724 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted boltzmann machine, in: Advances in Neural Information Processing Systems
    • G. Dahl, A.-r. Mohamed, G.E. Hinton, et al, Phone recognition with the mean-covariance restricted boltzmann machine, in: Advances in Neural Information Processing Systems, 2010, pp. 469–477.
    • (2010) , pp. 469-477
    • Dahl, G.1    Mohamed, A.-r.2    Hinton, G.E.3
  • 50
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Dahl, G.E., Yu, D., Deng, L., Acero, A., Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio, Speech, Lang. Process. 20 (2012), 30–42.
    • (2012) IEEE Trans. Audio, Speech, Lang. Process. , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 51
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Advances in Neural Information Processing Systems
    • A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 53
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
    • (2015) , pp. 1-9
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6    Erhan, D.7    Vanhoucke, V.8    Rabinovich, A.9
  • 54
    • 84865803833 scopus 로고    scopus 로고
    • Empirical evaluation and combination of advanced language modeling techniques
    • Twelfth Annual Conference of the International Speech Communication Association
    • T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. Černockỳ Empirical evaluation and combination of advanced language modeling techniques, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 605–608.
    • (2011) , pp. 605-608
    • Mikolov, T.1    Deoras, A.2    Kombrink, S.3    Burget, L.4    Černockỳ, J.5
  • 55
    • 84954213973 scopus 로고    scopus 로고
    • Joint learning of words and meaning representations for open-text semantic parsing
    • Artificial Intelligence and Statistics
    • A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, in: Artificial Intelligence and Statistics, 2012, pp. 127–135.
    • (2012) , pp. 127-135
    • Bordes, A.1    Glorot, X.2    Weston, J.3    Bengio, Y.4
  • 56
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • hlt-Naacl
    • T. Mikolov, W.-T. Yih, G. Zweig, Linguistic regularities in continuous space word representations, in: hlt-Naacl, vol. 13, 2013, pp. 746–751.
    • (2013) , vol.13 , pp. 746-751
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 57
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Advances in Neural Information Processing Systems
    • T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.
    • (2013) , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 58
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989), 359–366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 59
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Proceedings of the 27th International Conference on Machine Learning (ICML)
    • V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML), 2010, pp. 807–814.
    • (2010) , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 60
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R.J., Zipser, D., A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1 (1989), 270–280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 61
    • 85048292340 scopus 로고    scopus 로고
    • arXiv:1409.1259 On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv preprint.
    • K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, 2014, arXiv preprint arXiv:1409.1259.
    • (2014)
    • Cho, K.1    van Merriënboer, B.2    Bahdanau, D.3    Bengio, Y.4
  • 62
    • 85048258472 scopus 로고    scopus 로고
    • arXiv:1412.3555 Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling arXiv preprint.
    • J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, 2014 arXiv preprint arXiv:1412.3555.
    • (2014)
    • Chung, J.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 63
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • Advances in Neural Information Processing Systems
    • N. Srivastava, R.R. Salakhutdinov, Multimodal learning with deep boltzmann machines, in: Advances in Neural Information Processing Systems, 2012, pp. 2222–2230.
    • (2012) , pp. 2222-2230
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 65
    • 85048296712 scopus 로고    scopus 로고
    • http://keras.io Keras: Theano-Based Deep Learning Library Code: Documentation
    • F. Chollet, Keras: Theano-Based Deep Learning Library, 2015 Code: https://github.com/fchollet. Documentation: http://keras.io.
    • (2015)
    • Chollet, F.1
  • 66
    • 85048307968 scopus 로고    scopus 로고
    • arXiv:1505.00853 Empirical Evaluation of Rectified Activations in Convolutional Network arXiv preprint.
    • B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, 2015 arXiv preprint arXiv:1505.00853.
    • (2015)
    • Xu, B.1    Wang, N.2    Chen, T.3    Li, M.4
  • 68
    • 60249094201 scopus 로고    scopus 로고
    • A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests
    • Luengo, J., García, S., Herrera, F., A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst. Appl. 36 (2009), 7798–7808.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7798-7808
    • Luengo, J.1    García, S.2    Herrera, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.