-
1
-
-
34250897965
-
Mining data from intensive care patines
-
Ramon J, Fierens D, Guiza F, Meyfroidt G, Blockeel H, Bruynooghe M, et al. Mining data from intensive care patines. Adv Eng Inform 2007; 21: 243-256.
-
(2007)
Adv Eng Inform
, vol.21
, pp. 243-256
-
-
Ramon, J.1
Fierens, D.2
Guiza, F.3
Meyfroidt, G.4
Blockeel, H.5
Bruynooghe, M.6
-
2
-
-
33644858420
-
Mortality assessment in intensive care units via adverse events using artificial neural networks
-
Silva A, Cortez P, Santos MF, Gomes L, Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 2006; 36: 223-234.
-
(2006)
Artif Intell Med
, vol.36
, pp. 223-234
-
-
Silva, A.1
Cortez, P.2
Santos, M.F.3
Gomes, L.4
Neves, J.5
-
3
-
-
0036667408
-
Recent innovations in intensive care unit risk-prediction models
-
Rosenberg AL. Recent innovations in intensive care unit risk-prediction models. Curr Opin Crit Care 2002; 8: 321-330.
-
(2002)
Curr Opin Crit Care
, vol.8
, pp. 321-330
-
-
Rosenberg, A.L.1
-
4
-
-
0036140365
-
APACHE 1978-2001: The development of a quality assurance system based on prognosis: Milestones and personal reflections
-
Knaus WA. APACHE 1978-2001: the development of a quality assurance system based on prognosis: milestones and personal reflections. Arch Surg 2002; 137: 37-41.
-
(2002)
Arch Surg
, vol.137
, pp. 37-41
-
-
Knaus, W.A.1
-
5
-
-
0026409568
-
The APACHE III prog-nostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
-
Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prog-nostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100: 1619-1636.
-
(1991)
Chest
, vol.100
, pp. 1619-1636
-
-
Knaus, W.A.1
Wagner, D.P.2
Draper, E.A.3
Zimmerman, J.E.4
Bergner, M.5
Bastos, P.G.6
-
6
-
-
0021739699
-
A simplified acute physiology score for ICU patients
-
Le Gall JR, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, et al. A simplified acute physiology score for ICU patients. Crit Care Med 1984; 12: 975-977.
-
(1984)
Crit Care Med
, vol.12
, pp. 975-977
-
-
Le Gall, J.R.1
Loirat, P.2
Alperovitch, A.3
Glaser, P.4
Granthil, C.5
Mathieu, D.6
-
7
-
-
0027132478
-
A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study
-
Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270: 2957-2963.
-
(1993)
JAMA
, vol.270
, pp. 2957-2963
-
-
Le Gall, J.R.1
Lemeshow, S.2
Saulnier, F.3
-
8
-
-
0034235325
-
Knowledge discovery and knowledge validation in intensive care
-
Morik K, Imhoff M, Brockhausen P, Joachims T, Gather U. Knowledge discovery and knowledge validation in intensive care. Artif Intell Med 2000; 19: 225-249.
-
(2000)
Artif Intell Med
, vol.19
, pp. 225-249
-
-
Morik, K.1
Imhoff, M.2
Brockhausen, P.3
Joachims, T.4
Gather, U.5
-
9
-
-
0032996619
-
Application of data mining to intensive care unit microbiologic data
-
Moser SA, Jones WT, Brossette SE. Application of data mining to intensive care unit microbiologic data. Emerg Infect Dis 1999; 5: 454-457.
-
(1999)
Emerg Infect Dis
, vol.5
, pp. 454-457
-
-
Moser, S.A.1
Jones, W.T.2
Brossette, S.E.3
-
10
-
-
0036754616
-
Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning
-
Ganzert S, Guttmann J, Kersting K, Kuhlen R, Putensen C, Sydow M, et al. Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning. Artif Intell Med 2002; 26: 69-86.
-
(2002)
Artif Intell Med
, vol.26
, pp. 69-86
-
-
Ganzert, S.1
Guttmann, J.2
Kersting, K.3
Kuhlen, R.4
Putensen, C.5
Sydow, M.6
-
11
-
-
4744349442
-
Bayesian analysis, pattern analysis, and data mining in health care
-
Lucas P. Bayesian analysis, pattern analysis, and data mining in health care. Curr Opin Crit Care 2004; 10: 399-403.
-
(2004)
Curr Opin Crit Care
, vol.10
, pp. 399-403
-
-
Lucas, P.1
-
13
-
-
4744374023
-
Advances in statistical methodology and their application in critical care
-
Kong L, Milbrandt EB, Weissfeld LA. Advances in statistical methodology and their application in critical care. Curr Opin Crit Care 2004; 10: 391-394.
-
(2004)
Curr Opin Crit Care
, vol.10
, pp. 391-394
-
-
Kong, L.1
Milbrandt, E.B.2
Weissfeld, L.A.3
-
14
-
-
0035019648
-
Using Bayesian networks in the con-struction of a bi-level multi-classifier. A case study using intensive care unit patients data
-
Sierra B, Serrano N, Larranaga P, Plasencia EJ, Inza I, Jimenez JJ, et al. Using Bayesian networks in the con-struction of a bi-level multi-classifier. A case study using intensive care unit patients data. Artif Intell Med 2001; 22: 233-248.
-
(2001)
Artif Intell Med
, vol.22
, pp. 233-248
-
-
Sierra, B.1
Serrano, N.2
Larranaga, P.3
Plasencia, E.J.4
Inza, I.5
Jimenez, J.J.6
-
15
-
-
84878712110
-
-
APACHE Medical Systems Inc, McLean, VA: APACHE Medical Systems Inc
-
APACHE Medical Systems Inc. APACHE III methodology training critical care. McLean, VA: APACHE Medical Systems Inc.; 1998.
-
(1998)
APACHE III Methodology Training Critical Care
-
-
-
16
-
-
84878677855
-
-
Cerner Corporation. The APACHE IV equations: benchmarks for mortality and resource use [Internet]. Cerner Corporation; c2011 [cited at, Dec 1]. Avail-able from
-
Cerner Corporation. The APACHE IV equations: benchmarks for mortality and resource use [Internet]. Cerner Corporation; c2011 [cited at 2011 Dec 1]. Avail-able from http://www.cerner.com/public/Cerner_3.aspid=27300.
-
(2011)
-
-
-
17
-
-
84878744505
-
-
SPSS Inc, ver. 10.1. Chicago, IL: SPSS Inc
-
SPSS Inc. Clementine help manual ver. 10.1. Chicago, IL: SPSS Inc.; 2005.
-
(2005)
Clementine Help Manual
-
-
-
18
-
-
33750936249
-
Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room
-
Green M, Bjork J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med 2006; 38: 305-318.
-
(2006)
Artif Intell Med
, vol.38
, pp. 305-318
-
-
Green, M.1
Bjork, J.2
Forberg, J.3
Ekelund, U.4
Edenbrandt, L.5
Ohlsson, M.6
-
19
-
-
0020063002
-
A review of goodness of fit statistics for use in the development of logistic regression models
-
Lemeshow S, Hosmer DW Jr. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982; 115: 92-106.
-
(1982)
Am J Epidemiol
, vol.115
, pp. 92-106
-
-
Lemeshow, S.1
Hosmer Jr., D.W.2
-
20
-
-
0027422556
-
Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients
-
Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 1993; 270: 2478-2486.
-
(1993)
JAMA
, vol.270
, pp. 2478-2486
-
-
Lemeshow, S.1
Teres, D.2
Klar, J.3
Avrunin, J.S.4
Gehlbach, S.H.5
Rapoport, J.6
-
21
-
-
84942383855
-
Modeling the severity of illness of ICU patients. A systems update
-
Lemeshow S, Le Gall JR. Modeling the severity of illness of ICU patients. A systems update. JAMA 1994; 272: 1049-1055.
-
(1994)
JAMA
, vol.272
, pp. 1049-1055
-
-
Lemeshow, S.1
Le Gall, J.R.2
-
22
-
-
19344364327
-
Predicting breast cancer survivability: A comparison of three data mining methods
-
Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005; 34: 113-127.
-
(2005)
Artif Intell Med
, vol.34
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
23
-
-
0034193413
-
The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma
-
Crawford ED, Batuello JT, Snow P, Gamito EJ, McLeod DG, Partin AW, et al. The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma. Cancer 2000; 88: 2105-2109.
-
(2000)
Cancer
, vol.88
, pp. 2105-2109
-
-
Crawford, E.D.1
Batuello, J.T.2
Snow, P.3
Gamito, E.J.4
McLeod, D.G.5
Partin, A.W.6
-
24
-
-
0041382897
-
External validity of predictive models: A comparison of logistic regression, classification trees, and neural networks
-
Terrin N, Schmid CH, Griffith JL, D'Agostino RB, Selker HP. External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J Clin Epidemiol 2003; 56: 721-729.
-
(2003)
J Clin Epidemiol
, vol.56
, pp. 721-729
-
-
Terrin, N.1
Schmid, C.H.2
Griffith, J.L.3
D'Agostino, R.B.4
Selker, H.P.5
-
25
-
-
0032732069
-
A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks
-
Wong LS, Young JD. A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks. Anaesthesia 1999; 54: 1048-1054.
-
(1999)
Anaesthesia
, vol.54
, pp. 1048-1054
-
-
Wong, L.S.1
Young, J.D.2
-
26
-
-
0023753185
-
Audit of intensive care: A 30 month experience using the Apache II severity of disease classification system
-
Jacobs S, Chang RW, Lee B, Lee B. Audit of intensive care: a 30 month experience using the Apache II severity of disease classification system. Intensive Care Med 1988; 14: 567-574.
-
(1988)
Intensive Care Med
, vol.14
, pp. 567-574
-
-
Jacobs, S.1
Chang, R.W.2
Lee, B.3
Lee, B.4
-
27
-
-
0034970122
-
Clinical decision support systems for intensive care units: Using artificial neural networks
-
Frize M, Ennett CM, Stevenson M, Trigg HC. Clinical decision support systems for intensive care units: using artificial neural networks. Med Eng Phys 2001; 23: 217-225.
-
(2001)
Med Eng Phys
, vol.23
, pp. 217-225
-
-
Frize, M.1
Ennett, C.M.2
Stevenson, M.3
Trigg, H.C.4
-
28
-
-
0035116142
-
Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neu-ral networks with logistic regression models
-
Clermont G, Angus DC, DiRusso SM, Griffin M, Linde-Zwirble WT. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neu-ral networks with logistic regression models. Crit Care Med 2001; 29: 291-296.
-
(2001)
Crit Care Med
, vol.29
, pp. 291-296
-
-
Clermont, G.1
Angus, D.C.2
Dirusso, S.M.3
Griffin, M.4
Linde-Zwirble, W.T.5
-
29
-
-
27644463448
-
Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation
-
Harrison RF, Kennedy RL. Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation. Ann Emerg Med 2005; 46: 431-439.
-
(2005)
Ann Emerg Med
, vol.46
, pp. 431-439
-
-
Harrison, R.F.1
Kennedy, R.L.2
-
30
-
-
1342310793
-
Prediction of mortality in an Indian intensive care unit. Comparison between APACHE II and artificial neural networks
-
Nimgaonkar A, Karnad DR, Sudarshan S, Ohno-Mach-ado L, Kohane I. Prediction of mortality in an Indian intensive care unit. Comparison between APACHE II and artificial neural networks. Intensive Care Med 2004; 30: 248-253.
-
(2004)
Intensive Care Med
, vol.30
, pp. 248-253
-
-
Nimgaonkar, A.1
Karnad, D.R.2
Sudarshan, S.3
Ohno-Mach-ado, L.4
Kohane, I.5
-
31
-
-
15844411613
-
Comparison between logistic regression and neural networks to pre-dict death in patients with suspected sepsis in the emergency room
-
Jaimes F, Farbiarz J, Alvarez D, Martinez C. Comparison between logistic regression and neural networks to pre-dict death in patients with suspected sepsis in the emergency room. Crit Care 2005; 9: R150-R156.
-
(2005)
Crit Care
, vol.9
-
-
Jaimes, F.1
Farbiarz, J.2
Alvarez, D.3
Martinez, C.4
|