메뉴 건너뛰기




Volumn 222, Issue , 2018, Pages 190-206

Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate

Author keywords

Forecast; Hybrid model; Rainfall; Spectral analysis; Tropical climate; Uncertainty

Indexed keywords

RAIN;

EID: 85047460584     PISSN: 03014797     EISSN: 10958630     Source Type: Journal    
DOI: 10.1016/j.jenvman.2018.05.072     Document Type: Article
Times cited : (81)

References (55)
  • 1
    • 33845973772 scopus 로고    scopus 로고
    • Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT
    • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333:2–4 (2007), 413–430 https://doi.org/10.1016/j.jhydrol.2006.09.014.
    • (2007) J. Hydrol. , vol.333 , Issue.2-4 , pp. 413-430
    • Abbaspour, K.C.1    Yang, J.2    Maximov, I.3    Siber, R.4    Bogner, K.5    Mieleitner, J.6    Zobrist, J.7    Srinivasan, R.8
  • 2
    • 84865047835 scopus 로고    scopus 로고
    • Comparison of multivariate adaptive regression splines with coupled wavelet transforms artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
    • Adamowski, J., Chan, H.F., Prasher, S.O., Sharda, V.N., Comparison of multivariate adaptive regression splines with coupled wavelet transforms artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J. Hydroinf. 14:3 (2012), 731–744 https://doi.org/10.2166/hydro.2011.044.
    • (2012) J. Hydroinf. , vol.14 , Issue.3 , pp. 731-744
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Sharda, V.N.4
  • 3
    • 84897569563 scopus 로고    scopus 로고
    • Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts
    • Awan, J.A., Bae, D.H., Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour. Manag. 28:5 (2014), 1185–1199 https://doi.org/10.1007/s11269-014-0512-7.
    • (2014) Water Resour. Manag. , vol.28 , Issue.5 , pp. 1185-1199
    • Awan, J.A.1    Bae, D.H.2
  • 4
    • 84982282524 scopus 로고    scopus 로고
    • A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed
    • Azimi, H., Bonakdari, H., Ebtehaj, I., Michelson, D.G., A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Comput. Appl., 2016 https://doi.org/10.1007/s00521-016-2560-9.
    • (2016) Neural Comput. Appl.
    • Azimi, H.1    Bonakdari, H.2    Ebtehaj, I.3    Michelson, D.G.4
  • 5
    • 85020534978 scopus 로고    scopus 로고
    • Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: an application to the Ping Basin in Thailand
    • Babel, M.S., Sirisena, T.A.J.G., Singhrattna, N., Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: an application to the Ping Basin in Thailand. Hydrol. Res. 48 (2017), 867–882 https://doi.org/10.2166/nh.2016.212.
    • (2017) Hydrol. Res. , vol.48 , pp. 867-882
    • Babel, M.S.1    Sirisena, T.A.J.G.2    Singhrattna, N.3
  • 6
    • 0001623736 scopus 로고
    • Theil's forecast accuracy coefficient: a clarification
    • Bliemel, F., Theil's forecast accuracy coefficient: a clarification. J. Market. Res. 10:4 (1973), 444–446.
    • (1973) J. Market. Res. , vol.10 , Issue.4 , pp. 444-446
    • Bliemel, F.1
  • 7
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box, G.E.P., Cox, D.R., An analysis of transformations. J. Roy. Stat. Soc. B 26 (1964), 211–252.
    • (1964) J. Roy. Stat. Soc. B , vol.26 , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 8
    • 0004311217 scopus 로고
    • Series Analysis Forecasting and Control
    • first ed. Holden-Day San Francisco 0816211043
    • Box, G.E.P., Jenkins, G.M., Series Analysis Forecasting and Control. first ed., 1976, Holden-Day, San Francisco, 575 ISBN-10: 0816211043.
    • (1976) , pp. 575
    • Box, G.E.P.1    Jenkins, G.M.2
  • 9
    • 34249999002 scopus 로고    scopus 로고
    • The hierarchy of models for meandering rivers and related morphodynamic processes
    • Camporeale, C., Perona, P., Porporato, A., Ridolfi, L., The hierarchy of models for meandering rivers and related morphodynamic processes. Rev. Geophys., 45(1), 2007, RG1001 https://doi.org/10.1029/2005RG000185.
    • (2007) Rev. Geophys. , vol.45 , Issue.1 , pp. RG1001
    • Camporeale, C.1    Perona, P.2    Porporato, A.3    Ridolfi, L.4
  • 10
    • 55349132422 scopus 로고    scopus 로고
    • Time Series Analysis
    • Springer-Verlag New York, USA
    • Cryer, J., Chan, K., Time Series Analysis. 2008, Springer-Verlag, New York, USA.
    • (2008)
    • Cryer, J.1    Chan, K.2
  • 11
    • 84862082570 scopus 로고    scopus 로고
    • Annual Flooding Report of Pahang State 2005
    • Department of Irrigation and Drainage Malaysia (DID Malaysia)
    • Department of Irrigation and Drainage (DID), Annual Flooding Report of Pahang State 2005., 2005, Department of Irrigation and Drainage Malaysia (DID Malaysia).
    • (2005)
  • 12
    • 84862092044 scopus 로고    scopus 로고
    • Annual Flooding Report of Pahang State 2008/2009
    • Department of Irrigation and Drainage Malaysia (DID Malaysia)
    • Department of Irrigation and Drainage (DID), Annual Flooding Report of Pahang State 2008/2009., 2009, Department of Irrigation and Drainage Malaysia (DID Malaysia).
    • (2009)
  • 13
    • 84926465577 scopus 로고    scopus 로고
    • Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall
    • Devak, M., Dhanya, C.T., Gosain, A.K., Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. J. Hydrol. 525 (2015), 286–301 https://doi.org/10.1016/j.jhydrol.2015.03.051.
    • (2015) J. Hydrol. , vol.525 , pp. 286-301
    • Devak, M.1    Dhanya, C.T.2    Gosain, A.K.3
  • 14
    • 84968583582 scopus 로고    scopus 로고
    • A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes
    • Ebtehaj, I., Bonakdari, H., A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes. Water Sci. Technol. 73 (2016), 2244–2250 https://doi.org/10.2166/wst.2016.064.
    • (2016) Water Sci. Technol. , vol.73 , pp. 2244-2250
    • Ebtehaj, I.1    Bonakdari, H.2
  • 15
    • 85034843355 scopus 로고    scopus 로고
    • Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling
    • Ebtehaj, I., Bonakdari, H., Gharabaghi, B., Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling. Measurement 116 (2018), 473–482 https://doi.org/10.1016/j.measurement.2017.11.023.
    • (2018) Measurement , vol.116 , pp. 473-482
    • Ebtehaj, I.1    Bonakdari, H.2    Gharabaghi, B.3
  • 16
    • 84962302725 scopus 로고    scopus 로고
    • Extreme learning machine assessment for estimating sediment transport in open channels
    • Ebtehaj, I., Bonakdari, H., Shamshirband, S., Extreme learning machine assessment for estimating sediment transport in open channels. Eng. Comput. 32 (2016), 691–704 https://doi.org/10.1007/s00366-016-0446-1.
    • (2016) Eng. Comput. , vol.32 , pp. 691-704
    • Ebtehaj, I.1    Bonakdari, H.2    Shamshirband, S.3
  • 17
    • 84960384322 scopus 로고    scopus 로고
    • Integrative neural networks models for stream assessment in restoration projects
    • Gazendam, E., Gharabaghi, B., Ackerman, J., Whiteley, H., Integrative neural networks models for stream assessment in restoration projects. J. Hydrol. 536 (2016), 339–350 https://doi.org/10.1016/j.jhydrol.2016.02.057.
    • (2016) J. Hydrol. , vol.536 , pp. 339-350
    • Gazendam, E.1    Gharabaghi, B.2    Ackerman, J.3    Whiteley, H.4
  • 18
    • 85032193851 scopus 로고    scopus 로고
    • Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey
    • Ghorbani, M.A., Deo, R.C., Karimi, V., Yaseen, Z.M., Terzi, O., Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Environ. Res. Risk A, 2017 https://doi.org/10.1007/s00477-017-1474-0.
    • (2017) Stoch. Environ. Res. Risk A
    • Ghorbani, M.A.1    Deo, R.C.2    Karimi, V.3    Yaseen, Z.M.4    Terzi, O.5
  • 19
    • 84893700335 scopus 로고    scopus 로고
    • Methods for uncertainty assessment of climate models and model predictions over East Asia
    • Heo, K.Y., Ha, K.J., Yun, K.S., Lee, S.S., Kim, H.J., Wang, B., Methods for uncertainty assessment of climate models and model predictions over East Asia. Int. J. Climatol. 34 (2013), 377–390 https://doi.org/10.1002/joc.3692.
    • (2013) Int. J. Climatol. , vol.34 , pp. 377-390
    • Heo, K.Y.1    Ha, K.J.2    Yun, K.S.3    Lee, S.S.4    Kim, H.J.5    Wang, B.6
  • 20
    • 33846428782 scopus 로고    scopus 로고
    • Potential assessment of the support vector regression technique in rainfall forecasting
    • Hong, W.C., Pai, P.F., Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour. Manag. 21 (2007), 495–513 https://doi.org/10.1007/s11269-006-9026-2.
    • (2007) Water Resour. Manag. , vol.21 , pp. 495-513
    • Hong, W.C.1    Pai, P.F.2
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501 https://doi.org/10.1016/j.neucom.2005.12.126.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 23
    • 0003892928 scopus 로고
    • Long-term Storage: an Experimental Study
    • Constable London
    • Hurst, H.E., Black, R.P., Simaika, Y.M., Long-term Storage: an Experimental Study. 1965, Constable, London.
    • (1965)
    • Hurst, H.E.1    Black, R.P.2    Simaika, Y.M.3
  • 24
    • 85170494443 scopus 로고    scopus 로고
    • Monsun. Portal Rasmi Jabatan Meteorologi Malaysia
    • Jabatan Meteorologi Malaysia
    • Jabatan Meteorologi Malaysia (JMM), Monsun. Portal Rasmi Jabatan Meteorologi Malaysia. 2010 http://www.met.gov.my/index.php?option=%20com_content&task=view&id=69&Itemid=160&limit=1&limitstart=0 Jabatan Meteorologi Malaysia.
    • (2010)
  • 25
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
    • Jian, L., Zhao, Y., Zhu, Y.P., Zhang, M.B., Bertolatti, D., An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 426 (2012), 336–345 https://doi.org/10.1016/j.scitotenv.2012.03.025.
    • (2012) Sci. Total Environ. , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3    Zhang, M.B.4    Bertolatti, D.5
  • 26
    • 0001602356 scopus 로고
    • An alternative family of transformations
    • John, J., Draper, N., An alternative family of transformations. J. Roy. Stat. Soc. C App. 29 (1980), 190–197 https://doi.org/10.2307/2986305.
    • (1980) J. Roy. Stat. Soc. C App. , vol.29 , pp. 190-197
    • John, J.1    Draper, N.2
  • 27
    • 39049139625 scopus 로고
    • Systems of frequency curves generated by methods of translation
    • Johnson, N., Systems of frequency curves generated by methods of translation. Biometrika 36 (1949), 149–176 https://doi.org/10.2307/2332539.
    • (1949) Biometrika , vol.36 , pp. 149-176
    • Johnson, N.1
  • 28
    • 80054735386 scopus 로고    scopus 로고
    • Forecasting of daily air quality index in Delhi
    • Kumar, A., Goyal, P., Forecasting of daily air quality index in Delhi. Sci. Total Environ. 409:24 (2011), 5517–5523 https://doi.org/10.1016/j.scitotenv.2011.08.069.
    • (2011) Sci. Total Environ. , vol.409 , Issue.24 , pp. 5517-5523
    • Kumar, A.1    Goyal, P.2
  • 29
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk, K.C., Ball, J.E., Sharma, A., An application of artificial neural networks for rainfall forecasting. Math. Comput. Model. 33 (2001), 683–693 https://doi.org/10.1016/S0895-7177(00)00272-7.
    • (2001) Math. Comput. Model. , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 30
    • 0003018954 scopus 로고
    • Exponential data transformations
    • Manly, B.F., Exponential data transformations. Statistician 25 (1976), 37–42 https://doi.org/10.2307/2988129.
    • (1976) Statistician , vol.25 , pp. 37-42
    • Manly, B.F.1
  • 31
    • 84994709526 scopus 로고    scopus 로고
    • Prediction of pavement roughness using a hybrid gene expression programming-neural network technique
    • Mazari, M., Rodriguez, D.D., Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. J. Traffic Transport. Eng. 3 (2016), 448–455 https://doi.org/10.1016/j.jtte.2016.09.007.
    • (2016) J. Traffic Transport. Eng. , vol.3 , pp. 448-455
    • Mazari, M.1    Rodriguez, D.D.2
  • 32
    • 85030716329 scopus 로고    scopus 로고
    • New approaches for estimation of monthly rainfall based on GEP-ARCH and ANN-ARCH hybrid models
    • Mehdizadeh, S., Behmanesh, J., Khalili, K., New approaches for estimation of monthly rainfall based on GEP-ARCH and ANN-ARCH hybrid models. Water Resour. Manag., 2017 https://doi.org/10.1007/s11269-017-1825-0.
    • (2017) Water Resour. Manag.
    • Mehdizadeh, S.1    Behmanesh, J.2    Khalili, K.3
  • 33
    • 84925491951 scopus 로고    scopus 로고
    • A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods
    • Mirzavand, M., Ghazavi, R., A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour. Manag. 29 (2015), 1315–1328 https://doi.org/10.1007/s11269-014-0875-9.
    • (2015) Water Resour. Manag. , vol.29 , pp. 1315-1328
    • Mirzavand, M.1    Ghazavi, R.2
  • 34
    • 84884975137 scopus 로고    scopus 로고
    • Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series
    • Modarres, R., Ouarda, T.B.M.J., Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series. Hydrol. Process. 27 (2013), 3174–3191.
    • (2013) Hydrol. Process. , vol.27 , pp. 3174-3191
    • Modarres, R.1    Ouarda, T.B.M.J.2
  • 35
    • 84973137761 scopus 로고    scopus 로고
    • Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN model
    • Moeeni, H., Bonakdari, H., Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN model. Stoch. Environ. Res. Risk A 31 (2017), 1997–2010 https://doi.org/10.1007/s00477-016-1273-z.
    • (2017) Stoch. Environ. Res. Risk A , vol.31 , pp. 1997-2010
    • Moeeni, H.1    Bonakdari, H.2
  • 36
    • 85015785541 scopus 로고    scopus 로고
    • Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach
    • Moeeni, H., Bonakdari, H., Ebtehaj, I., Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. J. Earth Syst. Sci., 126(18), 2017 https://doi.org/10.1007/s12040-017-0798-y.
    • (2017) J. Earth Syst. Sci. , vol.126 , Issue.18
    • Moeeni, H.1    Bonakdari, H.2    Ebtehaj, I.3
  • 37
    • 85028251765 scopus 로고    scopus 로고
    • Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction
    • Moeeni, H., Bonakdari, H., Ebtehaj, I., Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction. Water Resour. Manag. 31 (2017), 2141–2156 https://doi.org/10.1007/s11269-017-1632-7.
    • (2017) Water Resour. Manag. , vol.31 , pp. 2141-2156
    • Moeeni, H.1    Bonakdari, H.2    Ebtehaj, I.3
  • 38
    • 85013128231 scopus 로고    scopus 로고
    • Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction
    • Moeeni, H., Bonakdari, H., Fatemi, S.E., Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction. J. Hydrol 547 (2017), 348–364 https://doi.org/10.1016/j.jhydrol.2017.02.012.
    • (2017) J. Hydrol , vol.547 , pp. 348-364
    • Moeeni, H.1    Bonakdari, H.2    Fatemi, S.E.3
  • 39
    • 85007484064 scopus 로고    scopus 로고
    • Stochastic modelling of seasonal and yearly rainfalls with low-frequency variability
    • Ng, J.L., Aziz, S.A., Huang, Y.F., Wayayok, A., Rowshon, M.K., Stochastic modelling of seasonal and yearly rainfalls with low-frequency variability. Stoch. Environ. Res. Risk A 31 (2017), 2215–2233 https://doi.org/10.1007/s00477-016-1373-9.
    • (2017) Stoch. Environ. Res. Risk A , vol.31 , pp. 2215-2233
    • Ng, J.L.1    Aziz, S.A.2    Huang, Y.F.3    Wayayok, A.4    Rowshon, M.K.5
  • 40
    • 85036475541 scopus 로고    scopus 로고
    • PM 10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study
    • Nieto, P.G., Lasheras, F.S., García-Gonzalo, E., de Cos Juez, F.J., PM 10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ. 621 (2018), 753–761 https://doi.org/10.1016/j.scitotenv.2017.11.291.
    • (2018) Sci. Total Environ. , vol.621 , pp. 753-761
    • Nieto, P.G.1    Lasheras, F.S.2    García-Gonzalo, E.3    de Cos Juez, F.J.4
  • 41
    • 85035325817 scopus 로고    scopus 로고
    • Applicability of box Jenkins SARIMA model in rainfall forecasting: a case study of Port-Harcourt south south Nigeria
    • Osarumwense, O.I., Applicability of box Jenkins SARIMA model in rainfall forecasting: a case study of Port-Harcourt south south Nigeria. Can. J. Comput. Math. Nat. Sci. Eng. Med. 4 (2013), 1–4.
    • (2013) Can. J. Comput. Math. Nat. Sci. Eng. Med. , vol.4 , pp. 1-4
    • Osarumwense, O.I.1
  • 42
    • 84881499389 scopus 로고    scopus 로고
    • ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient
    • Pektaş, A.O., Cigizoglu, H.K., ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. J. Hydrol. 500 (2013), 21–36 https://doi.org/10.1016/j.jhydrol.2013.07.020.
    • (2013) J. Hydrol. , vol.500 , pp. 21-36
    • Pektaş, A.O.1    Cigizoglu, H.K.2
  • 43
    • 84978696324 scopus 로고    scopus 로고
    • Multimodel approach using neural networks and symbolic regression to combine the estimated discharges of rainfall-runoff models
    • Phukoetphim, P., Shamseldin, A.Y., Adams, K., Multimodel approach using neural networks and symbolic regression to combine the estimated discharges of rainfall-runoff models. J. Hydrol. Eng., 21, 2016, 04016022 https://doi.org/10.1061/(ASCE)HE.1943-5584.0001332.
    • (2016) J. Hydrol. Eng. , vol.21
    • Phukoetphim, P.1    Shamseldin, A.Y.2    Adams, K.3
  • 44
    • 0003604539 scopus 로고
    • Applied Modeling of Hydrologic Time Series
    • Water Resources Publications Littleton
    • Salas, J.D., Delleur, J.W., Yevjevich, V.M., Lane, W.L., Applied Modeling of Hydrologic Time Series. 1980, Water Resources Publications, Littleton.
    • (1980)
    • Salas, J.D.1    Delleur, J.W.2    Yevjevich, V.M.3    Lane, W.L.4
  • 45
    • 85028316154 scopus 로고    scopus 로고
    • Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies
    • Shi, B., Wang, P., Jiang, J., Liu, R., Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies. Sci. Total Environ. 610 (2018), 1390–1399 https://doi.org/10.1016/j.scitotenv.2017.08.232.
    • (2018) Sci. Total Environ. , vol.610 , pp. 1390-1399
    • Shi, B.1    Wang, P.2    Jiang, J.3    Liu, R.4
  • 46
    • 0034962651 scopus 로고    scopus 로고
    • Summarizing multiple aspects of model performance in a single diagram
    • Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106 (2001), 7183–7192 https://doi.org/10.1029/2000JD900719.
    • (2001) J. Geophys. Res. Atmos. , vol.106 , pp. 7183-7192
    • Taylor, K.E.1
  • 47
    • 84928485486 scopus 로고    scopus 로고
    • Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
    • Tehrany, M.S., Pradhan, B., Jebur, M.N., Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk A 29 (2015), 1149–1165 https://doi.org/10.1007/s00477-015-1021-9.
    • (2015) Stoch. Environ. Res. Risk A , vol.29 , pp. 1149-1165
    • Tehrany, M.S.1    Pradhan, B.2    Jebur, M.N.3
  • 48
    • 0003683405 scopus 로고
    • Economic Forecasts and Policy
    • North-Holland Pub. Co
    • Theil, H., Economic Forecasts and Policy. 1961, North-Holland Pub. Co.
    • (1961)
    • Theil, H.1
  • 49
    • 0003860323 scopus 로고
    • Applied Economic Forecasting
    • North-Holland Pub. Co
    • Theil, H., Applied Economic Forecasting. 1966, North-Holland Pub. Co.
    • (1966)
    • Theil, H.1
  • 50
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • Valipour, M., Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl. 22 (2015), 592–598 https://doi.org/10.1002/met.1491.
    • (2015) Meteorol. Appl. , vol.22 , pp. 592-598
    • Valipour, M.1
  • 51
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476 (2013), 433–441 https://doi.org/10.1016/j.jhydrol.2012.11.017.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 52
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang, W.C., Chau, K.W., Xu, D.M., Chen, X.Y., Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 29 (2015), 2655–2675 https://doi.org/10.1007/s11269-015-0962-6.
    • (2015) Water Resour. Manag. , vol.29 , pp. 2655-2675
    • Wang, W.C.1    Chau, K.W.2    Xu, D.M.3    Chen, X.Y.4
  • 54
    • 0010741473 scopus 로고    scopus 로고
    • A new family of power transformation to improve normality or symmetry
    • Yeo, I.K., Johnson, R.A., A new family of power transformation to improve normality or symmetry. Biometrika 87 (2000), 954–959 https://doi.org/10.1093/biomet/87.4.954.
    • (2000) Biometrika , vol.87 , pp. 954-959
    • Yeo, I.K.1    Johnson, R.A.2
  • 55
    • 84968608491 scopus 로고    scopus 로고
    • Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions
    • Zeroual, A., Meddi, M., Assani, A.A., Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions. Water Resour. Manag. 30 (2016), 3191–3205 https://doi.org/10.1007/s11269-016-1340-8.
    • (2016) Water Resour. Manag. , vol.30 , pp. 3191-3205
    • Zeroual, A.1    Meddi, M.2    Assani, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.