메뉴 건너뛰기




Volumn 29, Issue 6, 2018, Pages 249-258

A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed

Author keywords

ANFIS; Firefly algorithm; Jump; Roller length; Supercritical

Indexed keywords

ALGORITHMS; BIOLUMINESCENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; HYDRAULIC JUMP; HYDRAULIC STRUCTURES; INFERENCE ENGINES; INTELLIGENT AGENTS; OPTIMIZATION; ROLLERS (MACHINE COMPONENTS);

EID: 84982282524     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-016-2560-9     Document Type: Article
Times cited : (47)

References (35)
  • 1
    • 0002825869 scopus 로고
    • Hydraulic jumps on rough beds
    • Rajaratnam N (1968) Hydraulic jumps on rough beds. Trans Eng Inst Can 11(A-2):1–8
    • (1968) Trans Eng Inst Can , vol.11 , Issue.A-2 , pp. 1-8
    • Rajaratnam, N.1
  • 3
    • 0021217956 scopus 로고
    • Hydraulic jump properties over a rough bed
    • Hughes W, Flack J (1984) Hydraulic jump properties over a rough bed. J Hydraul Eng 110(12):1755–1771. doi:10.1061/(ASCE)0733-9429(1984)110:12(1755)
    • (1984) J Hydraul Eng , vol.110 , Issue.12 , pp. 1755-1771
    • Hughes, W.1    Flack, J.2
  • 4
    • 0025570465 scopus 로고
    • Classical hydraulic jump: length of roller
    • Hager WH, Bremen R, Kawagoshi N (1990) Classical hydraulic jump: length of roller. J Hydraul Res 28(5):591–608. doi:10.1080/00221689009499048
    • (1990) J Hydraul Res , vol.28 , Issue.5 , pp. 591-608
    • Hager, W.H.1    Bremen, R.2    Kawagoshi, N.3
  • 5
    • 0036639875 scopus 로고    scopus 로고
    • Hydraulic jumps on corrugated beds
    • Ead S, Rajaratnam N (2002) Hydraulic jumps on corrugated beds. J Hydraul Eng 128(7):656–663. doi:10.1061/(ASCE)0733-9429(2002)128:7(656)
    • (2002) J Hydraul Eng , vol.128 , Issue.7 , pp. 656-663
    • Ead, S.1    Rajaratnam, N.2
  • 6
    • 34548163652 scopus 로고    scopus 로고
    • Hydraulic jumps on rough beds
    • Carollo F, Ferro V, Pampalone V (2007) Hydraulic jumps on rough beds. J Hydraul Eng 133(9):989–999. doi:10.1061/(ASCE)0733-9429(2007)133:9(989)
    • (2007) J Hydraul Eng , vol.133 , Issue.9 , pp. 989-999
    • Carollo, F.1    Ferro, V.2    Pampalone, V.3
  • 7
    • 50349086697 scopus 로고    scopus 로고
    • Hydraulic jump on rough bed of stream rehabilitation structures
    • Pagliara S, Lotti I, Palermo M (2008) Hydraulic jump on rough bed of stream rehabilitation structures. J Hydro Environ Res 2(1):29–38. doi:10.1016/j.jher.2008.06.001
    • (2008) J Hydro Environ Res , vol.2 , Issue.1 , pp. 29-38
    • Pagliara, S.1    Lotti, I.2    Palermo, M.3
  • 8
    • 66249143768 scopus 로고    scopus 로고
    • New solution of classical hydraulic jump
    • Carollo F, Ferro V, Pampalone V (2009) New solution of classical hydraulic jump. J Hydraul Eng 135(6):527–531. doi:10.1061/(ASCE)HY.1943-7900.0000036
    • (2009) J Hydraul Eng , vol.135 , Issue.6 , pp. 527-531
    • Carollo, F.1    Ferro, V.2    Pampalone, V.3
  • 9
    • 84855959270 scopus 로고    scopus 로고
    • Analysis of turbulent hydraulic jump over a transitional rough bed of a rectangular channel: universal relations
    • Afzal N, Bushra A, Seena A (2011) Analysis of turbulent hydraulic jump over a transitional rough bed of a rectangular channel: universal relations. J Eng Mech 137(12):835–845. doi:10.1061/(ASCE)EM.1943-7889.0000294
    • (2011) J Eng Mech , vol.137 , Issue.12 , pp. 835-845
    • Afzal, N.1    Bushra, A.2    Seena, A.3
  • 10
    • 84858781245 scopus 로고    scopus 로고
    • Hydraulic jumps in new roughened beds
    • Ezizah G, Yousif N, Mostafa S (2012) Hydraulic jumps in new roughened beds. Asian J Appl Sci 5(2):96–106
    • (2012) Asian J Appl Sci , vol.5 , Issue.2 , pp. 96-106
    • Ezizah, G.1    Yousif, N.2    Mostafa, S.3
  • 11
    • 84880397818 scopus 로고    scopus 로고
    • A search of the dominant free surface fluctuation frequency downstream of the oscillating hydraulic jump with the Bayesian spectral density approach
    • Mok KM, Yuen KV, Cheong KH, Hoi KI (2013) A search of the dominant free surface fluctuation frequency downstream of the oscillating hydraulic jump with the Bayesian spectral density approach. Phys Scr T 155:014007. doi:10.1088/0031-8949/2013/T155/014007
    • (2013) Phys Scr T , vol.155 , pp. 014007
    • Mok, K.M.1    Yuen, K.V.2    Cheong, K.H.3    Hoi, K.I.4
  • 14
    • 84892834845 scopus 로고    scopus 로고
    • Development of GEP-based functional relationship for sediment transport in tropical rivers
    • Ghani AA, Azamathulla HM (2014) Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Comput Appl 24(2):271–276. doi:10.1007/s00521-012-1222-9
    • (2014) Neural Comput Appl , vol.24 , Issue.2 , pp. 271-276
    • Ghani, A.A.1    Azamathulla, H.M.2
  • 15
    • 77958495448 scopus 로고    scopus 로고
    • Hybrid neural modeling for groundwater level prediction
    • Dash NB, Panda SN, Remesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19(8):1251–1263. doi:10.1007/s00521-010-0360-1
    • (2010) Neural Comput Appl , vol.19 , Issue.8 , pp. 1251-1263
    • Dash, N.B.1    Panda, S.N.2    Remesan, R.3    Sahoo, N.4
  • 16
    • 84902475668 scopus 로고    scopus 로고
    • Flood flow forecasting using ANN, ANFIS and regression models
    • Rezaeianzadeh M, Tabari H, Yazdi AA, Isik S, Kalin L (2014) Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput Appl 25(1):25–37. doi:10.1007/s00521-013-1443-6
    • (2014) Neural Comput Appl , vol.25 , Issue.1 , pp. 25-37
    • Rezaeianzadeh, M.1    Tabari, H.2    Yazdi, A.A.3    Isik, S.4    Kalin, L.5
  • 17
    • 84892733102 scopus 로고    scopus 로고
    • Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow
    • Sattar AM (2014) Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract 5(1):04013011. doi:10.1061/(ASCE)PS.1949-1204.0000153
    • (2014) J Pipeline Syst Eng Pract , vol.5 , Issue.1 , pp. 04013011
    • Sattar, A.M.1
  • 18
    • 84925742315 scopus 로고    scopus 로고
    • Gene expression models for prediction of longitudinal dispersion coefficient in streams
    • Sattar AM, Gharabaghi B (2015) Gene expression models for prediction of longitudinal dispersion coefficient in streams. J Hydrol 524:587–596. doi:10.1016/j.jhydrol.2015.03.016
    • (2015) J Hydrol , vol.524 , pp. 587-596
    • Sattar, A.M.1    Gharabaghi, B.2
  • 19
    • 84901054909 scopus 로고    scopus 로고
    • Gene expression models for prediction of dam breach parameters
    • Sattar AM (2014) Gene expression models for prediction of dam breach parameters. J Hydroinform 16(3):550–571. doi:10.2166/hydro.2013.084
    • (2014) J Hydroinform , vol.16 , Issue.3 , pp. 550-571
    • Sattar, A.M.1
  • 20
    • 84922354942 scopus 로고    scopus 로고
    • Assessment of evolutionary algorithms in predicting non-deposition sediment transport
    • Ebtehaj I, Bonakdari H (2016) Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water J 13(5):499–510. doi:10.1080/1573062X.2014.994003
    • (2016) Urban Water J , vol.13 , Issue.5 , pp. 499-510
    • Ebtehaj, I.1    Bonakdari, H.2
  • 21
    • 84960366234 scopus 로고    scopus 로고
    • Event-based total suspended sediment particle size distribution model
    • Thompson J, Sattar AM, Gharabaghi B, Warner RC (2016) Event-based total suspended sediment particle size distribution model. J Hydrol 536:236–246. doi:10.1016/j.jhydrol.2016.02.056
    • (2016) J Hydrol , vol.536 , pp. 236-246
    • Thompson, J.1    Sattar, A.M.2    Gharabaghi, B.3    Warner, R.C.4
  • 22
    • 84948144819 scopus 로고    scopus 로고
    • A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer
    • Ebtehaj I, Bonakdari H, Shamshirband S, Mohammadi K (2016) A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Meas Instrum 47:19–27. doi:10.1016/j.flowmeasinst.2015.11.002
    • (2016) Flow Meas Instrum , vol.47 , pp. 19-27
    • Ebtehaj, I.1    Bonakdari, H.2    Shamshirband, S.3    Mohammadi, K.4
  • 23
    • 33644976627 scopus 로고    scopus 로고
    • On the complexity of artificial neural networks for smart structures monitoring
    • Yuen KV, Lam HF (2006) On the complexity of artificial neural networks for smart structures monitoring. Eng Struct 28(7):977–984. doi:10.1016/j.engstruct.2005.11.002
    • (2006) Eng Struct , vol.28 , Issue.7 , pp. 977-984
    • Yuen, K.V.1    Lam, H.F.2
  • 24
    • 58549088485 scopus 로고    scopus 로고
    • Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system
    • Zounemat-Kermani M, Beheshti AS, Ataie-Ashtiani B, Sabbagh-Yazdi SR (2009) Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput 9:746–755. doi:10.1016/j.asoc.2008.09.006
    • (2009) Appl Soft Comput , vol.9 , pp. 746-755
    • Zounemat-Kermani, M.1    Beheshti, A.S.2    Ataie-Ashtiani, B.3    Sabbagh-Yazdi, S.R.4
  • 25
    • 84882314134 scopus 로고    scopus 로고
    • Evaluation of sediment transport in sewer using artificial neural network
    • Ebtehaj I, Bonakdari H (2013) Evaluation of sediment transport in sewer using artificial neural network. Eng. Appl Com Fluid Mech 7(3):382–392. doi:10.1080/19942060.2013.11015479
    • (2013) Eng. Appl Com Fluid Mech , vol.7 , Issue.3 , pp. 382-392
    • Ebtehaj, I.1    Bonakdari, H.2
  • 26
    • 84939161761 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs
    • Khoshbin F, Bonakdari H, Ashraf Talesh SH, Ebtehaj I, Zaji AH, Azimi H (2015) Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Eng Optim 48(6):933–948. doi:10.1080/0305215X.2015.1071807
    • (2015) Eng Optim , vol.48 , Issue.6 , pp. 933-948
    • Khoshbin, F.1    Bonakdari, H.2    Ashraf Talesh, S.H.3    Ebtehaj, I.4    Zaji, A.H.5    Azimi, H.6
  • 27
    • 84975688824 scopus 로고    scopus 로고
    • Modelling hydraulic jumps with artificial neural networks
    • Omid MH, Omid M, Esmaeeli VM (2005) Modelling hydraulic jumps with artificial neural networks. Proc Inst Civ Eng Water Manage 158(2):65–70. doi:10.1680/wama.2005.158.2.65
    • (2005) Proc Inst Civ Eng Water Manage , vol.158 , Issue.2 , pp. 65-70
    • Omid, M.H.1    Omid, M.2    Esmaeeli, V.M.3
  • 28
    • 84857019234 scopus 로고    scopus 로고
    • Determination of the length of hydraulic jumps using artificial neural networks
    • Naseri M, Othman F (2012) Determination of the length of hydraulic jumps using artificial neural networks. Adv Eng Soft 48:27–31. doi:10.1016/j.advengsoft.2012.01.003
    • (2012) Adv Eng Soft , vol.48 , pp. 27-31
    • Naseri, M.1    Othman, F.2
  • 29
    • 84877308211 scopus 로고    scopus 로고
    • Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming
    • Abbaspour A, Farsadizadeh D, Ghorbani MA (2013) Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming. Water Sci Eng 6(2):189–198. doi:10.3882/j.issn.1674-2370.2013.02.007
    • (2013) Water Sci Eng , vol.6 , Issue.2 , pp. 189-198
    • Abbaspour, A.1    Farsadizadeh, D.2    Ghorbani, M.A.3
  • 30
    • 84873595988 scopus 로고    scopus 로고
    • An evaluation of ANN methods for lengths of hydraulic jumps in U-shaped channel
    • Houichi L, Dechemi N, Heddam S, Achour B (2013) An evaluation of ANN methods for lengths of hydraulic jumps in U-shaped channel. J Hydroinform 15(1):147–154. doi:10.2166/hydro.2012.138
    • (2013) J Hydroinform , vol.15 , Issue.1 , pp. 147-154
    • Houichi, L.1    Dechemi, N.2    Heddam, S.3    Achour, B.4
  • 31
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. Syst Man Cybern IEEE Trans 23(3):665–685. doi:10.1109/21.256541
    • (1993) Syst Man Cybern IEEE Trans , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 33
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization
    • Yang XS (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio Inspir Comput 2(2):78–84. doi:10.1504/IJBIC.2010.032124
    • (2010) Int J Bio Inspir Comput , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.S.1
  • 34
    • 84893812050 scopus 로고    scopus 로고
    • A support vector machine-firefly algorithm based forecasting model to determine malaria transmission
    • Ch S, Sohani SK, Kumar D, Malik A, Chahar BR, Nema AK, Panigrahi BK, Dhiman RC (2014) A support vector machine-firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288. doi:10.1016/j.neucom.2013.09.030
    • (2014) Neurocomputing , vol.129 , pp. 279-288
    • Ch, S.1    Sohani, S.K.2    Kumar, D.3    Malik, A.4    Chahar, B.R.5    Nema, A.K.6    Panigrahi, B.K.7    Dhiman, R.C.8
  • 35
    • 1942429034 scopus 로고
    • Notes on regression and inheritance in the case of two parents
    • Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc A 58:240–242
    • (1895) Proc R Soc A , vol.58 , pp. 240-242
    • Pearson, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.