메뉴 건너뛰기




Volumn 32, Issue 1, 2018, Pages 105-122

Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA

Author keywords

Hybrid ANFIS FFA model; Rainfall forecasting; Stochastic pattern; Tropical environment

Indexed keywords

CATCHMENTS; FORECASTING; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; INFERENCE ENGINES; MEAN SQUARE ERROR; OPTIMIZATION; RAIN; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; WEATHER FORECASTING;

EID: 85029529514     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-017-1797-0     Document Type: Article
Times cited : (104)

References (51)
  • 1
    • 84862685995 scopus 로고    scopus 로고
    • Application of artificial neural networks to rainfall forecasting in Queensland, Australia
    • Abbot J, Marohasy J (2012) Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv Atmos Sci 29:717–730. https://doi.org/10.1007/s00376-012-1259-9
    • (2012) Adv Atmos Sci , vol.29 , pp. 717-730
    • Abbot, J.1    Marohasy, J.2
  • 3
    • 77956724793 scopus 로고    scopus 로고
    • An empirical comparison of machine learning models for time series forecasting
    • Ahmed NK, Atiya AF, Gayar N El, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29:594–621. https://doi.org/10.1080/07474938.2010.481556
    • (2010) Econ Rev , vol.29 , pp. 594-621
    • Ahmed, N.K.1    Atiya, A.F.2    El, G.N.3    El-Shishiny, H.4
  • 4
    • 84938794312 scopus 로고    scopus 로고
    • Prediction of daily rainfall by a hybrid wavelet-season-neuro technique
    • Altunkaynak A, Nigussie TA (2015) Prediction of daily rainfall by a hybrid wavelet-season-neuro technique. J Hydrol 529:287–301. https://doi.org/10.1016/j.jhydrol.2015.07.046
    • (2015) J Hydrol , vol.529 , pp. 287-301
    • Altunkaynak, A.1    Nigussie, T.A.2
  • 5
    • 59349114346 scopus 로고    scopus 로고
    • Adaptive deadbeat controllers for brushless DC drives using PSO and ANFIS techniques
    • Awadallah MA, Bayoumi EHE, Soliman HM (2009) Adaptive deadbeat controllers for brushless DC drives using PSO and ANFIS techniques. J Electr Eng 60:3–11
    • (2009) J Electr Eng , vol.60 , pp. 3-11
    • Awadallah, M.A.1    Bayoumi, E.H.E.2    Soliman, H.M.3
  • 6
    • 84982282524 scopus 로고    scopus 로고
    • A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed
    • Azimi H, Bonakdari H, Ebtehaj I, Michelson DG (2016) A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Comput & Applic. https://doi.org/10.1007/s00521-016-2560-9
    • (2016) Neural Comput & Applic
    • Azimi, H.1    Bonakdari, H.2    Ebtehaj, I.3    Michelson, D.G.4
  • 7
    • 84891364063 scopus 로고    scopus 로고
    • A computational model for accommodating spatial uncertainty: predicting inhabitation patterns in open-planned spaces
    • Çekmiş A, Hacihasanoǧlu I, Ostwald MJ (2014) A computational model for accommodating spatial uncertainty: predicting inhabitation patterns in open-planned spaces. Build Environ 73:115–126. https://doi.org/10.1016/j.buildenv.2013.11.023
    • (2014) Build Environ , vol.73 , pp. 115-126
    • Çekmiş, A.1    Hacihasanoǧlu, I.2    Ostwald, M.J.3
  • 8
    • 84903642315 scopus 로고    scopus 로고
    • Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature
    • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
    • (2014) Geosci Model Dev , vol.7 , pp. 1247-1250
    • Chai, T.1    Draxler, R.R.2
  • 9
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29:1–10. https://doi.org/10.1016/j.advwatres.2005.04.015
    • (2006) Adv Water Resour , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 10
    • 1842760558 scopus 로고    scopus 로고
    • Forecasting economic and financial time-series with non-linear models
    • Clements MP, Franses PH, Swanson NR (2004) Forecasting economic and financial time-series with non-linear models. Int J Forecast 20:169–183. https://doi.org/10.1016/j.ijforecast.2003.10.004
    • (2004) Int J Forecast , vol.20 , pp. 169-183
    • Clements, M.P.1    Franses, P.H.2    Swanson, N.R.3
  • 11
    • 77954144514 scopus 로고    scopus 로고
    • Application of ANN and ANFIS models for reconstructing missing flow data
    • Dastorani MT, Moghadamnia A, Piri J, Rico-Ramirez M (2010) Application of ANN and ANFIS models for reconstructing missing flow data. Environ Monit Assess 166:421–434. https://doi.org/10.1007/s10661-009-1012-8
    • (2010) Environ Monit Assess , vol.166 , pp. 421-434
    • Dastorani, M.T.1    Moghadamnia, A.2    Piri, J.3    Rico-Ramirez, M.4
  • 12
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22:443–473. https://doi.org/10.1016/j.ijforecast.2006.01.001
    • (2006) Int J Forecast , vol.22 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 13
    • 84954310363 scopus 로고    scopus 로고
    • An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
    • Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess 188(2):90
    • (2016) Environ Monit Assess , vol.188 , Issue.2 , pp. 90
    • Deo, R.C.1    Şahin, M.2
  • 14
    • 84930680695 scopus 로고    scopus 로고
    • Toward essential union between evolutionary strategy and data assimilation for model diagnostics: an application for reducing the search space of optimization problems using hydrologic genome map
    • Dumedah G (2014) Toward essential union between evolutionary strategy and data assimilation for model diagnostics: an application for reducing the search space of optimization problems using hydrologic genome map. Environ Model Softw 69:342–352. https://doi.org/10.1016/j.envsoft.2014.09.025
    • (2014) Environ Model Softw , vol.69 , pp. 342-352
    • Dumedah, G.1
  • 15
    • 85027942599 scopus 로고    scopus 로고
    • Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers
    • Ebtehaj I, Bonakdari H (2014) Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resour Manag 28(13):4765–4779
    • (2014) Water Resour Manag , vol.28 , Issue.13 , pp. 4765-4779
    • Ebtehaj, I.1    Bonakdari, H.2
  • 16
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21:533–556. https://doi.org/10.1007/s11269-006-9027-1
    • (2007) Water Resour Manag , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 17
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
    • El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6:2875–2888
    • (2011) Int J Phys Sci , vol.6 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Seyed, A.3
  • 18
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007. https://doi.org/10.2307/1912773
    • (1982) Econometrica , vol.50 , pp. 987-1007
    • Engle, R.F.1
  • 19
    • 84957593712 scopus 로고    scopus 로고
    • Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
    • Fahimi F, Yaseen ZM, El-shafie A (2016) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol:1–29. https://doi.org/10.1007/s00704-016-1735-8
    • (2016) Theor Appl Climatol , pp. 1-29
    • Fahimi, F.1    Yaseen, Z.M.2    El-shafie, A.3
  • 20
    • 84876255188 scopus 로고    scopus 로고
    • River flow conditions and dynamic state analysis of Pahang river
    • Gasim MB, Toriman ME, Idris M et al (2013) River flow conditions and dynamic state analysis of Pahang river. Am J Appl Sci 10:42–57. https://doi.org/10.3844/ajassp.2013.42.57
    • (2013) Am J Appl Sci , vol.10 , pp. 42-57
    • Gasim, M.B.1    Toriman, M.E.2    Idris, M.3
  • 21
    • 85019152630 scopus 로고    scopus 로고
    • Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point
    • Ghorbani MA, Shamshirband S, Zare Haghi D et al (2017) Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res 172:32–38. https://doi.org/10.1016/j.still.2017.04.009
    • (2017) Soil Tillage Res , vol.172 , pp. 32-38
    • Ghorbani, M.A.1    Shamshirband, S.2    Zare Haghi, D.3
  • 22
    • 84898464831 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS
    • Goyal MK, Bharti B, Quilty J et al (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS. Expert Syst Appl 41:5267–5276. https://doi.org/10.1016/j.eswa.2014.02.047
    • (2014) Expert Syst Appl , vol.41 , pp. 5267-5276
    • Goyal, M.K.1    Bharti, B.2    Quilty, J.3
  • 23
    • 85029510945 scopus 로고    scopus 로고
    • Pahang River map of river
    • Harun Z, Jantan A, Jasin B et al (2014) Pahang River map of river. J Asian Earth Sci 44:177–194. https://doi.org/10.5327/Z23174889201400040002
    • (2014) J Asian Earth Sci , vol.44 , pp. 177-194
    • Harun, Z.1    Jantan, A.2    Jasin, B.3
  • 24
    • 84880039776 scopus 로고    scopus 로고
    • Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive Neuro fuzzy inference system (ANFIS)
    • Hipni A, El-shafie A, Najah A et al (2013) Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive Neuro fuzzy inference system (ANFIS). Water Resour Manag 27:3803–3823. https://doi.org/10.1007/s11269-013-0382-4
    • (2013) Water Resour Manag , vol.27 , pp. 3803-3823
    • Hipni, A.1    El-shafie, A.2    Najah, A.3
  • 25
    • 17844365878 scopus 로고    scopus 로고
    • Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales
    • Hong Y, Hsu K, Sorooshian S, Gao X (2005) Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales. Water Resour Res. https://doi.org/10.1029/2004WR003142
    • (2005) Water Resour Res
    • Hong, Y.1    Hsu, K.2    Sorooshian, S.3    Gao, X.4
  • 26
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 27
    • 84899966812 scopus 로고    scopus 로고
    • Application of firefly algorithm and ANFIS for optimisation of functionally graded beams
    • Kamarian S, Yas MH, Pourasghar A, Daghagh M (2014) Application of firefly algorithm and ANFIS for optimisation of functionally graded beams. J Exp Theor Artif Intell 26:197–209. https://doi.org/10.1080/0952813X.2013.813978
    • (2014) J Exp Theor Artif Intell , vol.26 , pp. 197-209
    • Kamarian, S.1    Yas, M.H.2    Pourasghar, A.3    Daghagh, M.4
  • 28
    • 84877955665 scopus 로고    scopus 로고
    • Comparison of Mamdani-type and Sugeno-type fuzzy inference Systems for air Conditioning System
    • Kaur A, Kaur A (2012) Comparison of Mamdani-type and Sugeno-type fuzzy inference Systems for air Conditioning System. Int J Soft Comput Eng 2:323–325
    • (2012) Int J Soft Comput Eng , vol.2 , pp. 323-325
    • Kaur, A.1    Kaur, A.2
  • 29
    • 84913580598 scopus 로고    scopus 로고
    • Evolutionary algorithms for the optimal management of coastal groundwater: a comparative study toward future challenges
    • Ketabchi H, Ataie-Ashtiani B (2015) Evolutionary algorithms for the optimal management of coastal groundwater: a comparative study toward future challenges. J Hydrol 520:193–213. https://doi.org/10.1016/j.jhydrol.2014.11.043
    • (2015) J Hydrol , vol.520 , pp. 193-213
    • Ketabchi, H.1    Ataie-Ashtiani, B.2
  • 30
    • 22944469095 scopus 로고    scopus 로고
    • Advancing dynamical prediction of Indian monsoon rainfall
    • Krishna Kumar K, Hoerling M, Rajagopalan B (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32:1–4. https://doi.org/10.1029/2004GL021979
    • (2005) Geophys Res Lett , vol.32 , pp. 1-4
    • Krishna Kumar, K.1    Hoerling, M.2    Rajagopalan, B.3
  • 31
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
    • Legates DR, Mccabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241
    • (1999) Water Resour Res , vol.35 , pp. 233-241
    • Legates, D.R.1    Mccabe, G.J.2
  • 32
    • 79952484879 scopus 로고    scopus 로고
    • Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models
    • McMillan H, Jackson B, Clark M et al (2011) Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models. J Hydrol 400:83–94. https://doi.org/10.1016/j.jhydrol.2011.01.026
    • (2011) J Hydrol , vol.400 , pp. 83-94
    • McMillan, H.1    Jackson, B.2    Clark, M.3
  • 33
    • 79751499078 scopus 로고    scopus 로고
    • ANFIS-based modelling for photovoltaic power supply system: a case study
    • Mellit A, Kalogirou SA (2011) ANFIS-based modelling for photovoltaic power supply system: a case study. Renew Energy 36:250–258. https://doi.org/10.1016/j.renene.2010.06.028
    • (2011) Renew Energy , vol.36 , pp. 250-258
    • Mellit, A.1    Kalogirou, S.A.2
  • 35
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
    • Najah A, El-Shafie A, Karim O, Jaafar O (2012) Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput & Applic 21:833–841. https://doi.org/10.1007/s00521-010-0486-1
    • (2012) Neural Comput & Applic , vol.21 , pp. 833-841
    • Najah, A.1    El-Shafie, A.2    Karim, O.3    Jaafar, O.4
  • 36
    • 84927596937 scopus 로고    scopus 로고
    • A survey on rainfall prediction using artificial neural network
    • Nayak D, Mahapatra A, Mishra P (2013) A survey on rainfall prediction using artificial neural network. Int J Comput 72:32–40. https://doi.org/10.5120/12580-9217
    • (2013) Int J Comput , vol.72 , pp. 32-40
    • Nayak, D.1    Mahapatra, A.2    Mishra, P.3
  • 39
    • 38249041872 scopus 로고
    • The selection and use of linear and bilinear time series models
    • Poskitt DS, Tremayne AR (1986) The selection and use of linear and bilinear time series models. Int J Forecast 2:101–114. https://doi.org/10.1016/0169-2070(86)90033-6
    • (1986) Int J Forecast , vol.2 , pp. 101-114
    • Poskitt, D.S.1    Tremayne, A.R.2
  • 40
    • 85021292297 scopus 로고    scopus 로고
    • Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
    • Prasad R, Deo RC, Li Y, Maraseni T (2017) Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm. Atmos Res 197:42–63
    • (2017) Atmos Res , vol.197 , pp. 42-63
    • Prasad, R.1    Deo, R.C.2    Li, Y.3    Maraseni, T.4
  • 41
    • 84929121341 scopus 로고    scopus 로고
    • A hybrid SVM-FFA method for prediction of monthly mean global solar radiation
    • Shamshirband S, Mohammadi K, Tong CW et al (2016) A hybrid SVM-FFA method for prediction of monthly mean global solar radiation. Theor Appl Climatol 125:53–65. https://doi.org/10.1007/s00704-015-1482-2
    • (2016) Theor Appl Climatol , vol.125 , pp. 53-65
    • Shamshirband, S.1    Mohammadi, K.2    Tong, C.W.3
  • 42
    • 85040149306 scopus 로고    scopus 로고
    • Comparative study of daily rainfall forecasting models using adaptive-neuro fuzzy inference system (ANFIS)
    • Sojitra MA, Purohit RC, Pandya PA (2015) Comparative study of daily rainfall forecasting models using adaptive-neuro fuzzy inference system (ANFIS). Curr World Environ 10(2):529
    • (2015) Curr World Environ , vol.10 , Issue.2 , pp. 529
    • Sojitra, M.A.1    Purohit, R.C.2    Pandya, P.A.3
  • 43
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15:116–132. https://doi.org/10.1109/TSMC.1985.6313399
    • (1985) IEEE Trans Syst Man Cybern , vol.SMC-15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 44
    • 0000003175 scopus 로고
    • Threshold autoregression, limit cycles and cyclical data
    • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data. J R Stat Soc Ser B 42:245–292
    • (1980) J R Stat Soc Ser B , vol.42 , pp. 245-292
    • Tong, H.1    Lim, K.S.2
  • 45
    • 84880043630 scopus 로고    scopus 로고
    • Monthly rainfall prediction using wavelet neural network analysis
    • Venkata Ramana R, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manag 27:3697–3711. https://doi.org/10.1007/s11269-013-0374-4
    • (2013) Water Resour Manag , vol.27 , pp. 3697-3711
    • Venkata Ramana, R.1    Krishna, B.2    Kumar, S.R.3    Pandey, N.G.4
  • 46
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos PJ (1988) Generalization of backpropagation with application to a recurrent gas market model. Neural Netw 1:339–356. https://doi.org/10.1016/0893-6080(88)90007-X
    • (1988) Neural Netw , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 47
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
    • (1981) Phys Geogr , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 48
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization
    • Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Biomed Comput 2(2):78–84. https://doi.org/10.1504/IJBIC.2010.032124
    • (2010) Int J Biomed Comput , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.-S.1
  • 49
    • 84945157492 scopus 로고    scopus 로고
    • Artificial intelligence based models for stream-flow forecasting: 2000–2015
    • Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038
    • (2015) J Hydrol , vol.530 , pp. 829-844
    • Yaseen, Z.M.1    El-shafie, A.2    Jaafar, O.3
  • 50
    • 84994591754 scopus 로고    scopus 로고
    • Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
    • Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, El-Shafie A (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol 542:603–614
    • (2016) J Hydrol , vol.542 , pp. 603-614
    • Yaseen, Z.M.1    Jaafar, O.2    Deo, R.C.3    Kisi, O.4    Adamowski, J.5    Quilty, J.6    El-Shafie, A.7
  • 51
    • 84930377267 scopus 로고    scopus 로고
    • Evolutionary algorithm enhancement for model predictive control and real-time decision support
    • Zimmer A, Schmidt A, Ostfeld A, Minsker B (2015) Evolutionary algorithm enhancement for model predictive control and real-time decision support. Environ Model Softw 69:330–341. https://doi.org/10.1016/j.envsoft.2015.03.005
    • (2015) Environ Model Softw , vol.69 , pp. 330-341
    • Zimmer, A.1    Schmidt, A.2    Ostfeld, A.3    Minsker, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.