메뉴 건너뛰기




Volumn 3, Issue 5, 2016, Pages 448-455

Prediction of pavement roughness using a hybrid gene expression programming-neural network technique

Author keywords

Artificial neural network; Gene expression programming; International roughness index; Long term pavement performance; Pavement

Indexed keywords


EID: 84994709526     PISSN: 20957564     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jtte.2016.09.007     Document Type: Article
Times cited : (127)

References (26)
  • 1
    • 78650232140 scopus 로고    scopus 로고
    • Formulation of flow number of asphalt mixes using a hybrid computational method
    • Alavi, A.H., Ameri, M., Gandomi, A.H., et al. Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials 25:3 (2011), 1338–1355.
    • (2011) Construction and Building Materials , vol.25 , Issue.3 , pp. 1338-1355
    • Alavi, A.H.1    Ameri, M.2    Gandomi, A.H.3
  • 3
    • 0141595041 scopus 로고    scopus 로고
    • A new technique for using multivariate adaptive regression splines (MARS) in pavement roughness prediction
    • Attoh-Okine, N.O., Mensah, S., Nawaiseh, M., A new technique for using multivariate adaptive regression splines (MARS) in pavement roughness prediction. Proceedings of the Institute of Civil Engineers-Transport 156:1 (2003), 51–56.
    • (2003) Proceedings of the Institute of Civil Engineers-Transport , vol.156 , Issue.1 , pp. 51-56
    • Attoh-Okine, N.O.1    Mensah, S.2    Nawaiseh, M.3
  • 5
    • 33751405498 scopus 로고    scopus 로고
    • Long-term Pavement Performance Information Management System: Pavement Performance Database User Reference Guide
    • FHWA-RD-03–088 Federal Highway Administration Washington DC
    • Elkins, G.E., Schmalzer, P., Thompson, T., et al. Long-term Pavement Performance Information Management System: Pavement Performance Database User Reference Guide. FHWA-RD-03–088, 2003, Federal Highway Administration, Washington DC.
    • (2003)
    • Elkins, G.E.1    Schmalzer, P.2    Thompson, T.3
  • 6
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira, C., Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13:2 (2001), 87–129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 7
    • 79952335644 scopus 로고    scopus 로고
    • Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
    • Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R., et al. Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. Journal of Materials in Civil Engineering 23:3 (2010), 248–263.
    • (2010) Journal of Materials in Civil Engineering , vol.23 , Issue.3 , pp. 248-263
    • Gandomi, A.H.1    Alavi, A.H.2    Mirzahosseini, M.R.3
  • 8
    • 0003979924 scopus 로고
    • Introduction to the Theory of Neural Computation
    • Addison-Wesley Boston
    • Hertz, J., Krogh, A., Palmer, R.G., Introduction to the Theory of Neural Computation. 1991, Addison-Wesley, Boston.
    • (1991)
    • Hertz, J.1    Krogh, A.2    Palmer, R.G.3
  • 9
    • 12744276043 scopus 로고    scopus 로고
    • Gray system model for estimating the pavement international roughness index
    • Jiang, Y., Li, S., Gray system model for estimating the pavement international roughness index. Journal of Performance of Constructed Facilities 19:1 (2005), 62–68.
    • (2005) Journal of Performance of Constructed Facilities , vol.19 , Issue.1 , pp. 62-68
    • Jiang, Y.1    Li, S.2
  • 10
    • 78651314426 scopus 로고    scopus 로고
    • Network-level pavement roughness prediction model for rehabilitation recommendations
    • Kargah-Ostadi, N., Stoffels, S.M., Tabatabaee, N., Network-level pavement roughness prediction model for rehabilitation recommendations. Transportation Research Record 2155 (2010), 124–133.
    • (2010) Transportation Research Record , vol.2155 , pp. 124-133
    • Kargah-Ostadi, N.1    Stoffels, S.M.2    Tabatabaee, N.3
  • 11
    • 0003724513 scopus 로고
    • Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems
    • STAN-CS-90-1314 Stanford University Computer Science Department Technical Stanford
    • Koza, J.R., Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. STAN-CS-90-1314, 1990, Stanford University Computer Science Department Technical, Stanford.
    • (1990)
    • Koza, J.R.1
  • 13
    • 0013016098 scopus 로고    scopus 로고
    • HDM-4 Analytical Framework and Model Descriptions, Highway Development and Management
    • PIARC Paris
    • Odoki, J.B., Kerali, H.G.R., HDM-4 Analytical Framework and Model Descriptions, Highway Development and Management. 2000, PIARC, Paris.
    • (2000)
    • Odoki, J.B.1    Kerali, H.G.R.2
  • 14
    • 74049098092 scopus 로고    scopus 로고
    • Models for Pavement Deterioration Using LTPD
    • FHWA-NJ-1999-030 Federal Highway Administration Washington DC
    • Ozbay, K., Laub, R., Models for Pavement Deterioration Using LTPD. FHWA-NJ-1999-030, 2001, Federal Highway Administration, Washington DC.
    • (2001)
    • Ozbay, K.1    Laub, R.2
  • 15
    • 0003799826 scopus 로고    scopus 로고
    • Investigation of Development of Pavement Roughness
    • FHWA-RD-97–147 Federal Highway Administration Washington DC
    • Perera, R.W., Byrum, C., Kohn, S.D., Investigation of Development of Pavement Roughness. FHWA-RD-97–147, 1998, Federal Highway Administration, Washington DC.
    • (1998)
    • Perera, R.W.1    Byrum, C.2    Kohn, S.D.3
  • 16
    • 84906074846 scopus 로고    scopus 로고
    • Relating Ride Quality and Structural Adequacy for Pavement Rehabilitation/Design Decisions
    • FHWA-HRT-12–035 Federal Highway Administration Washington DC
    • Rada, G.R., Perera, R., Prabhakar, V., Relating Ride Quality and Structural Adequacy for Pavement Rehabilitation/Design Decisions. FHWA-HRT-12–035, 2012, Federal Highway Administration, Washington DC.
    • (2012)
    • Rada, G.R.1    Perera, R.2    Prabhakar, V.3
  • 17
    • 7044235218 scopus 로고    scopus 로고
    • Selection of genetic algorithm parameters for backcalculation of pavement moduli
    • Reddy, M.A., Reddy, K.S., Pandey, B.B., Selection of genetic algorithm parameters for backcalculation of pavement moduli. International Journal of Pavement Engineering 5:2 (2004), 81–90.
    • (2004) International Journal of Pavement Engineering , vol.5 , Issue.2 , pp. 81-90
    • Reddy, M.A.1    Reddy, K.S.2    Pandey, B.B.3
  • 18
    • 33751429427 scopus 로고    scopus 로고
    • Improving prediction accuracy in mechanistic-empirical pavement design guide
    • Schram, S., Abdelrahman, M., Improving prediction accuracy in mechanistic-empirical pavement design guide. Transportation Research Record 1947 (2006), 59–68.
    • (2006) Transportation Research Record , vol.1947 , pp. 59-68
    • Schram, S.1    Abdelrahman, M.2
  • 19
    • 84884628748 scopus 로고    scopus 로고
    • Application of soft computing for prediction of pavement condition index
    • Shahnazari, H., Tutunchian, M.A., Mashayekhi, M., et al. Application of soft computing for prediction of pavement condition index. Journal of Transportation Engineering 138:12 (2012), 1495–1506.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.12 , pp. 1495-1506
    • Shahnazari, H.1    Tutunchian, M.A.2    Mashayekhi, M.3
  • 20
    • 84875798837 scopus 로고    scopus 로고
    • Simplified Techniques for Evaluation and Interpretation of Pavement Deflections for Network-level Analysis: Guide for Assessment of Pavement Structural Performance for PMS Applications
    • FHWA-HRT-12–025 Federal Highway Administration Washington DC
    • Stubstad, R., Carvalho, R., Briggs, R., et al. Simplified Techniques for Evaluation and Interpretation of Pavement Deflections for Network-level Analysis: Guide for Assessment of Pavement Structural Performance for PMS Applications. FHWA-HRT-12–025, 2012, Federal Highway Administration, Washington DC.
    • (2012)
    • Stubstad, R.1    Carvalho, R.2    Briggs, R.3
  • 21
    • 0003454492 scopus 로고
    • Industrial Applications of Fuzzy Control
    • Elsevier Science Pub. Co New York
    • Sugeno, M., Industrial Applications of Fuzzy Control. 1985, Elsevier Science Pub. Co, New York.
    • (1985)
    • Sugeno, M.1
  • 22
    • 33846248742 scopus 로고    scopus 로고
    • Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion
    • Sun, L., Cai, X., Yang, J., Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion. Journal of Sound and Vibration 301:1–2 (2007), 18–27.
    • (2007) Journal of Sound and Vibration , vol.301 , Issue.1-2 , pp. 18-27
    • Sun, L.1    Cai, X.2    Yang, J.3
  • 23
    • 84872702778 scopus 로고    scopus 로고
    • Modeling for pavement roughness using the ANFIS approach
    • Terzi, S., Modeling for pavement roughness using the ANFIS approach. Advances in Engineering Software 57 (2013), 59–64.
    • (2013) Advances in Engineering Software , vol.57 , pp. 59-64
    • Terzi, S.1
  • 24
    • 14644423103 scopus 로고    scopus 로고
    • Analysis Relating to Pavement Material Characterizations and Their Effects on Pavement Performance
    • FHWA-RD-97–05 Federal Highway Administration Washington DC
    • Von Quintus, H., Killingsworth, B., Analysis Relating to Pavement Material Characterizations and Their Effects on Pavement Performance. FHWA-RD-97–05, 1997, Federal Highway Administration, Washington DC.
    • (1997)
    • Von Quintus, H.1    Killingsworth, B.2
  • 25
    • 38349182426 scopus 로고    scopus 로고
    • Experimentation with gray theory for pavement smoothness prediction
    • Wang, K., Li, Q., Hall, K.D., et al. Experimentation with gray theory for pavement smoothness prediction. Transportation Research Record 1990 (2007), 3–13.
    • (2007) Transportation Research Record , vol.1990 , pp. 3-13
    • Wang, K.1    Li, Q.2    Hall, K.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.