메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ANTINEOPLASTIC AGENT; PACLITAXEL;

EID: 85030317641     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-12378-4     Document Type: Article
Times cited : (84)

References (37)
  • 1
    • 84964647459 scopus 로고    scopus 로고
    • High-content screening for quantitative cell biology
    • Usaj, M. M. et al. High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598-611 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 598-611
    • Usaj, M.M.1
  • 2
    • 84866884932 scopus 로고    scopus 로고
    • Functional genomic and high-content screening for target discovery and deconvolution
    • Heynen-Genel, S., Pache, L., Chanda, S. K. & Rosen, J. Functional genomic and high-content screening for target discovery and deconvolution. Expert Opin. Drug Discov. 7, 955-968 (2012).
    • (2012) Expert Opin. Drug Discov. , vol.7 , pp. 955-968
    • Heynen-Genel, S.1    Pache, L.2    Chanda, S.K.3    Rosen, J.4
  • 3
    • 84871589905 scopus 로고    scopus 로고
    • Morphobase, an encyclopedic cell morphology database, and its use for drug target identification
    • Futamura, Y. et al. Morphobase, an encyclopedic cell morphology database, and its use for drug target identification. Chem. Biol. 19, 1620-1630 (2012).
    • (2012) Chem. Biol. , vol.19 , pp. 1620-1630
    • Futamura, Y.1
  • 4
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo, L. H., Wu, L. F. & Altschuler, S. J. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4, 445-453 (2007).
    • (2007) Nat. Methods , vol.4 , pp. 445-453
    • Loo, L.H.1    Wu, L.F.2    Altschuler, S.J.3
  • 5
    • 8444223104 scopus 로고    scopus 로고
    • Multidimensional drug profiling by automated microscopy
    • Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306; (2004).
    • (2004) Science , vol.306
    • Perlman, Z.E.1
  • 6
    • 84962815651 scopus 로고    scopus 로고
    • Applications in image-based profiling of perturbations
    • Caicedo, J. C., Singh, S. & Carpenter, A. E. Applications in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39, 134-142 (2016).
    • (2016) Curr. Opin. Biotechnol. , vol.39 , pp. 134-142
    • Caicedo, J.C.1    Singh, S.2    Carpenter, A.E.3
  • 7
    • 84880328076 scopus 로고    scopus 로고
    • A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes
    • Yin, Z. et al. A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat. Cell Biol. 15, 860-871 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 860-871
    • Yin, Z.1
  • 8
    • 84953790713 scopus 로고    scopus 로고
    • Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines
    • Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70-77 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 70-77
    • Kang, J.1
  • 9
    • 44949098358 scopus 로고    scopus 로고
    • Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells-influence on chromatin organization and histone-DNA interactions
    • Wojcik, K. & Dobrucki, J. W. Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells-influence on chromatin organization and histone-DNA interactions. Cytometry A 73a, 555-562 (2008).
    • (2008) Cytometry A 73a , pp. 555-562
    • Wojcik, K.1    Dobrucki, J.W.2
  • 10
    • 84953896921 scopus 로고    scopus 로고
    • Label-free cell cycle analysis for high-throughput imaging flow cytometry
    • Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256, https://doi.org/10.1038/ncomms10256 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10256
    • Blasi, T.1
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. & Vapnik, V. Support-vector networks. Mach Learn. 20, 273-297 (1995).
    • (1995) Mach Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 85008602558 scopus 로고    scopus 로고
    • Machine learning and computer vision approaches for phenotypic profiling
    • Grys, B. T. et al. Machine learning and computer vision approaches for phenotypic profiling. J. Cell Biol. 216, 65-71 (2016).
    • (2016) J. Cell Biol. , vol.216 , pp. 65-71
    • Grys, B.T.1
  • 15
    • 84957538065 scopus 로고    scopus 로고
    • High-throughput optofluidic particle profiling with morphological and chemical specificity
    • Ugawa, M. et al. High-throughput optofluidic particle profiling with morphological and chemical specificity. Opt. Lett. 40, 4803-4806 (2015).
    • (2015) Opt. Lett. , vol.40 , pp. 4803-4806
    • Ugawa, M.1
  • 17
    • 85009919315 scopus 로고    scopus 로고
    • High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry
    • Yang, Y. S. S. et al. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 8, 14069, https://doi.org/10.1038/ncomms14069 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 14069
    • Yang, Y.S.S.1
  • 18
    • 85011599023 scopus 로고    scopus 로고
    • Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay
    • Tang, A. H. L. et al. Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay. Biomed. Opt. Express 8, 640-652 (2017).
    • (2017) Biomed. Opt. Express , vol.8 , pp. 640-652
    • Tang, A.H.L.1
  • 19
    • 59149095069 scopus 로고    scopus 로고
    • Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis
    • Chalut, K. J., Ostrander, J. H., Giacomelli, M. G. & Wax, A. Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis. Cancer Res. 69, 1199-1204 (2009).
    • (2009) Cancer Res. , vol.69 , pp. 1199-1204
    • Chalut, K.J.1    Ostrander, J.H.2    Giacomelli, M.G.3    Wax, A.4
  • 20
    • 0031020572 scopus 로고    scopus 로고
    • Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells
    • Saunders, D. E. et al. Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. Int. J. Cancer 70, 214-220 (1997).
    • (1997) Int. J. Cancer , vol.70 , pp. 214-220
    • Saunders, D.E.1
  • 21
    • 84941040066 scopus 로고    scopus 로고
    • IPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin, H., Deng, E. Z., Ding, H., Chen, W. & Chou, K. C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 42, 12961-12972 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12961-12972
    • Lin, H.1    Deng, E.Z.2    Ding, H.3    Chen, W.4    Chou, K.C.5
  • 22
    • 84892954329 scopus 로고    scopus 로고
    • Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection
    • Liu, B. et al. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics 30, 472-479 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 472-479
    • Liu, B.1
  • 23
    • 84906975785 scopus 로고    scopus 로고
    • IDNA-Prot|dis: Identifying DNA-binding proteins by Incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
    • Liu, B. et al. iDNA-Prot|dis: identifying DNA-binding proteins by Incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLOS ONE 9, e106691 (2014).
    • (2014) PLOS ONE , vol.9 , pp. e106691
    • Liu, B.1
  • 24
    • 84956620000 scopus 로고    scopus 로고
    • RepRNA: A web server for generating various feature vectors of RNA sequences
    • Liu, B., Liu, F., Fang, L., Wang, X. & Chou, K. C. repRNA: a web server for generating various feature vectors of RNA sequences. Mol. Genet. Genomics 291, 473-481 (2016).
    • (2016) Mol. Genet. Genomics , vol.291 , pp. 473-481
    • Liu, B.1    Liu, F.2    Fang, L.3    Wang, X.4    Chou, K.C.5
  • 25
    • 84960984309 scopus 로고    scopus 로고
    • Deep learning in label-free cell classification
    • Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 21471
    • Chen, C.L.1
  • 26
    • 85000843987 scopus 로고    scopus 로고
    • QA: Improving the estimation of single protein model quality with deep belief networks
    • Cao, R., Bhattacharya, D., Hou, J. & Cheng, J. DeepQA: improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics 17, 495 (2016).
    • (2016) BMC Bioinformatics , vol.17 , pp. 495
    • Cao, R.1    Bhattacharya, D.2    Hou, J.3    Deep, C.J.4
  • 27
    • 84957543913 scopus 로고    scopus 로고
    • Optical time-stretch imaging: Principles and applications
    • Lei, C., Guo, B., Cheng, Z. & Goda, K. Optical time-stretch imaging: Principles and applications. Appl. Phys. Rev. 3, 011102 (2016).
    • (2016) Appl. Phys. Rev. , vol.3 , pp. 011102
    • Lei, C.1    Guo, B.2    Cheng, Z.3    Goda, K.4
  • 28
    • 84863938828 scopus 로고    scopus 로고
    • High-throughput single-microparticle imaging flow analyzer
    • Goda, K. et al. High-throughput single-microparticle imaging flow analyzer. Proc. Natl. Acad. Sci. USA 109, 11630-11635 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 11630-11635
    • Goda, K.1
  • 29
    • 84977138919 scopus 로고    scopus 로고
    • High-throughput label-free image cytometry and image-based classification of live Euglena gracilis
    • Lei, C. et al. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomed. Opt. Express 7, 2703-2708 (2016).
    • (2016) Biomed. Opt. Express , vol.7 , pp. 2703-2708
    • Lei, C.1
  • 30
    • 84873395557 scopus 로고    scopus 로고
    • Dispersive Fourier transformation for fast continuous single-shot measurements
    • Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photon. 7, 102-112 (2013).
    • (2013) Nat. Photon. , vol.7 , pp. 102-112
    • Goda, K.1    Jalali, B.2
  • 31
    • 84969983729 scopus 로고    scopus 로고
    • Optofluidic time-stretch imaging - An emerging tool for high-throughput imaging flow cytometry
    • Lau, A. K. S., Shum, H. C., Wong, K. K. Y. & Tsia, K. K. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry. Lab Chip 16, 1743-1756 (2016).
    • (2016) Lab Chip , vol.16 , pp. 1743-1756
    • Lau, A.K.S.1    Shum, H.C.2    Wong, K.K.Y.3    Tsia, K.K.4
  • 32
    • 65949114635 scopus 로고    scopus 로고
    • Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena
    • Goda, K., Tsia, K. K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145-1149 (2009).
    • (2009) Nature , vol.458 , pp. 1145-1149
    • Goda, K.1    Tsia, K.K.2    Jalali, B.3
  • 33
    • 84862006374 scopus 로고    scopus 로고
    • Hybrid dispersion laser scanner
    • Goda, K. et al. Hybrid dispersion laser scanner. Sci. Rep. 2, 445, https://doi.org/10.1038/srep00445 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 445
    • Goda, K.1
  • 34
    • 85017546094 scopus 로고    scopus 로고
    • High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic timestretch quantitative phase microscopy
    • Guo, B. et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic timestretch quantitative phase microscopy. Cytometry A 91, 494-502 (2017).
    • (2017) Cytometry A , vol.91 , pp. 494-502
    • Guo, B.1
  • 35
    • 85023165788 scopus 로고    scopus 로고
    • Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy
    • Jiang, Y. et al. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 17, 2426-2434 (2017).
    • (2017) Lab Chip , vol.17 , pp. 2426-2434
    • Jiang, Y.1
  • 36
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
    • (2006) Genome Biol. , vol.7 , pp. R100
    • Carpenter, A.E.1
  • 37
    • 79954500285 scopus 로고    scopus 로고
    • Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software
    • Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 1179-1180
    • Kamentsky, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.