-
2
-
-
0033225865
-
Introduction to variational methods for graphical models
-
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
8
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. JMLR, 6:1679-1704, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
10
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
13
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
14
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
15
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
M. Opper and O. Winther. Gaussian processes for classification: Mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
16
-
-
85031107033
-
-
Andrew Gelman, Aki Vehtari, Pasi Jylänki, Tuomas Sivula, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P Cunningham, David Schiminovich, and Christian Robert. Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data. arXiv preprint arXiv:1412.4869 2017.
-
(2017)
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data
-
-
Gelman, A.1
Vehtari, A.2
Jylänki, P.3
Sivula, T.4
Tran, D.5
Sahai, S.6
Blomstedt, P.7
Cunningham, J.P.8
Schiminovich, D.9
Robert, C.10
-
17
-
-
85018868471
-
-
Y. W. Teh, L. Hasenclever, T. Lienart, S. Vollmer, S. Webb, B. Lakshminarayanan, and C. Blundell. Distributed Bayesian learning with stochastic natural-gradient expectation propagation and the posterior server. arXiv preprint arXiv:1512.09327 2015.
-
(2015)
Distributed Bayesian Learning With Stochastic Natural-gradient Expectation Propagation and the Posterior Server
-
-
Teh, Y.W.1
Hasenclever, L.2
Lienart, T.3
Vollmer, S.4
Webb, S.5
Lakshminarayanan, B.6
Blundell, C.7
-
19
-
-
27744528998
-
-
Technical report, Microsoft Research
-
T. Minka. Power EP. Technical report, Microsoft Research, 2004.
-
(2004)
Power EP
-
-
Minka, T.1
-
20
-
-
84998694412
-
Black-box α-divergence minimization
-
J. M. Hernández-Lobato, Y. Li, D. Hernández-Lobato, T. Bui, and R. E. Turner. Black-box α-divergence minimization. ICML, 2016.
-
(2016)
ICML
-
-
Hernández-Lobato, J.M.1
Li, Y.2
Hernández-Lobato, D.3
Bui, T.4
Turner, R.E.5
-
21
-
-
85031094563
-
Variational inference with Rényi divergence
-
Y. Li and R. E. Turner. Variational inference with Rényi divergence. In NIPS, 2016.
-
(2016)
NIPS
-
-
Li, Y.1
Turner, R.E.2
-
23
-
-
85047001143
-
Neural variational inference and learning in undirected graphical models
-
Volodymyr Kuleshov and Stefano Ermon. Neural variational inference and learning in undirected graphical models. In NIPS, 2017.
-
(2017)
NIPS
-
-
Kuleshov, V.1
Ermon, S.2
-
24
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
29
-
-
0001201909
-
Bayesian model selection in social research
-
A. E. Raftery. Bayesian model selection in social research. Sociological methodology, 25:111-164, 1995.
-
(1995)
Sociological Methodology
, vol.25
, pp. 111-164
-
-
Raftery, A.E.1
-
30
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
J. Paisley, D. Blei, and M. Jordan. Variational Bayesian inference with stochastic search. In ICML, 2012.
-
(2012)
ICML
-
-
Paisley, J.1
Blei, D.2
Jordan, M.3
-
31
-
-
85046996170
-
Expectation propagation in the large-data limit
-
G. Dehaene and S. Barthelmé. Expectation propagation in the large-data limit. In NIPS, 2015.
-
(2015)
NIPS
-
-
Dehaene, G.1
Barthelmé, S.2
-
32
-
-
84862282880
-
Variable metric stochastic approximation theory
-
Peter Sunehag, Jochen Trumpf, SVN Vishwanathan, Nicol N Schraudolph, et al. Variable metric stochastic approximation theory. In AISTATS, pages 560-566, 2009.
-
(2009)
AISTATS
, pp. 560-566
-
-
Sunehag, P.1
Trumpf, J.2
Vishwanathan, S.V.N.3
Schraudolph, N.N.4
-
33
-
-
84997848955
-
-
Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David M Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787 2016.
-
(2016)
Edward: A Library for Probabilistic Modeling, Inference, and Criticism
-
-
Tran, D.1
Kucukelbir, A.2
Dieng, A.B.3
Rudolph, M.4
Liang, D.5
Blei, D.M.6
-
35
-
-
84919795562
-
Factorized point process intensities: A spatial analysis of professional basketball
-
A. Miller, L. Bornn, R. Adams, and K. Goldsberry. Factorized point process intensities: A spatial analysis of professional basketball. In ICML, 2014.
-
(2014)
ICML
-
-
Miller, A.1
Bornn, L.2
Adams, R.3
Goldsberry, K.4
|